These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 24219798)

  • 1. Magnetic nanoparticle hyperthermia: a new frontier in biology and medicine?
    Ivkov R
    Int J Hyperthermia; 2013 Dec; 29(8):703-5. PubMed ID: 24219798
    [No Abstract]   [Full Text] [Related]  

  • 2. Real-time infrared thermography detection of magnetic nanoparticle hyperthermia in a murine model under a non-uniform field configuration.
    Rodrigues HF; Mello FM; Branquinho LC; Zufelato N; Silveira-Lacerda EP; Bakuzis AF
    Int J Hyperthermia; 2013 Dec; 29(8):752-67. PubMed ID: 24138472
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Next-generation superparamagnetic iron oxide nanoparticles for cancer theranostics.
    Li K; Nejadnik H; Daldrup-Link HE
    Drug Discov Today; 2017 Sep; 22(9):1421-1429. PubMed ID: 28454771
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanoparticle-mediated hyperthermia in cancer therapy.
    Chatterjee DK; Diagaradjane P; Krishnan S
    Ther Deliv; 2011 Aug; 2(8):1001-14. PubMed ID: 22506095
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Magnetic iron oxide nanoparticles for tumor-targeted therapy.
    Chen B; Wu W; Wang X
    Curr Cancer Drug Targets; 2011 Feb; 11(2):184-9. PubMed ID: 21158723
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis and functionalisation of magnetic nanoparticles for hyperthermia applications.
    Grüttner C; Müller K; Teller J; Westphal F
    Int J Hyperthermia; 2013 Dec; 29(8):777-89. PubMed ID: 24099465
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of magnetic nanoparticle and microwave hyperthermia cancer treatment methodology and treatment effect in a rodent breast cancer model.
    Petryk AA; Giustini AJ; Gottesman RE; Trembly BS; Hoopes PJ
    Int J Hyperthermia; 2013 Dec; 29(8):819-27. PubMed ID: 24219799
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Magnetic nanoparticles: a novel platform for cancer theranostics.
    Singh A; Sahoo SK
    Drug Discov Today; 2014 Apr; 19(4):474-81. PubMed ID: 24140592
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Image-guided thermal therapy with a dual-contrast magnetic nanoparticle formulation: A feasibility study.
    Attaluri A; Seshadri M; Mirpour S; Wabler M; Marinho T; Furqan M; Zhou H; De Paoli S; Gruettner C; Gilson W; DeWeese T; Garcia M; Ivkov R; Liapi E
    Int J Hyperthermia; 2016 Aug; 32(5):543-57. PubMed ID: 27151045
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Magnetic nanoformulations for prostate cancer.
    Chowdhury P; Roberts AM; Khan S; Hafeez BB; Chauhan SC; Jaggi M; Yallapu MM
    Drug Discov Today; 2017 Aug; 22(8):1233-1241. PubMed ID: 28526660
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Targeted nanoscale magnetic hyperthermia: challenges and potentials of peptide-based targeting.
    Fourmy D; Carrey J; Gigoux V
    Nanomedicine (Lond); 2015; 10(6):893-6. PubMed ID: 25867854
    [No Abstract]   [Full Text] [Related]  

  • 12. Thermoresponsive core-shell magnetic nanoparticles for combined modalities of cancer therapy.
    Purushotham S; Chang PE; Rumpel H; Kee IH; Ng RT; Chow PK; Tan CK; Ramanujan RV
    Nanotechnology; 2009 Jul; 20(30):305101. PubMed ID: 19581698
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermoablation of malignant kidney tumors using magnetic nanoparticles: an in vivo feasibility study in a rabbit model.
    Bruners P; Braunschweig T; Hodenius M; Pietsch H; Penzkofer T; Baumann M; Günther RW; Schmitz-Rode T; Mahnken AH
    Cardiovasc Intervent Radiol; 2010 Feb; 33(1):127-34. PubMed ID: 19430744
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vivo applications of magnetic nanoparticle hyperthermia.
    Hilger I
    Int J Hyperthermia; 2013 Dec; 29(8):828-34. PubMed ID: 24219800
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Preparation and characterization of Mn-Zn ferrite oxygene nanoparticle for tumor thermotherapy].
    Jia X; Zhang D; Zheng J; Gu N; Zhu W; Fan X; Jin L; Wan M; Li Q
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2006 Dec; 23(6):1263-6. PubMed ID: 17228722
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Iron oxide-based nanostructures for MRI and magnetic hyperthermia.
    Hilger I; Kaiser WA
    Nanomedicine (Lond); 2012 Sep; 7(9):1443-59. PubMed ID: 22994960
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cooperative organization in iron oxide multi-core nanoparticles potentiates their efficiency as heating mediators and MRI contrast agents.
    Lartigue L; Hugounenq P; Alloyeau D; Clarke SP; Lévy M; Bacri JC; Bazzi R; Brougham DF; Wilhelm C; Gazeau F
    ACS Nano; 2012 Dec; 6(12):10935-49. PubMed ID: 23167525
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Practical aspects of ferromagnetic thermoseed hyperthermia.
    Brezovich IA; Meredith RF
    Radiol Clin North Am; 1989 May; 27(3):589-602. PubMed ID: 2648461
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preparation of carboplatin-Fe@C-loaded chitosan nanoparticles and study on hyperthermia combined with pharmacotherapy for liver cancer.
    Li FR; Yan WH; Guo YH; Qi H; Zhou HX
    Int J Hyperthermia; 2009 Aug; 25(5):383-91. PubMed ID: 19391033
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Water-soluble iron oxide nanocubes with high values of specific absorption rate for cancer cell hyperthermia treatment.
    Guardia P; Di Corato R; Lartigue L; Wilhelm C; Espinosa A; Garcia-Hernandez M; Gazeau F; Manna L; Pellegrino T
    ACS Nano; 2012 Apr; 6(4):3080-91. PubMed ID: 22494015
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.