BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 24219868)

  • 1. Alteration in cellular acetylcholine influences dauer formation in Caenorhabditis elegans.
    Lee J; Kim KY; Paik YK
    BMB Rep; 2014 Feb; 47(2):80-5. PubMed ID: 24219868
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gαo and Gαq regulate the expression of daf-7, a TGFβ-like gene, in Caenorhabditis elegans.
    Myers EM
    PLoS One; 2012; 7(7):e40368. PubMed ID: 22808145
    [TBL] [Abstract][Full Text] [Related]  

  • 3. STR-33, a novel G protein-coupled receptor that regulates locomotion and egg laying in Caenorhabditis elegans.
    Lee JE; Jeong PY; Joo HJ; Kim H; Lee T; Koo HS; Paik YK
    J Biol Chem; 2011 Nov; 286(46):39860-70. PubMed ID: 21937442
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanism of extrasynaptic dopamine signaling in Caenorhabditis elegans.
    Chase DL; Pepper JS; Koelle MR
    Nat Neurosci; 2004 Oct; 7(10):1096-103. PubMed ID: 15378064
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The G protein regulators EGL-10 and EAT-16, the Giα GOA-1 and the G(q)α EGL-30 modulate the response of the C. elegans ASH polymodal nociceptive sensory neurons to repellents.
    Esposito G; Amoroso MR; Bergamasco C; Di Schiavi E; Bazzicalupo P
    BMC Biol; 2010 Nov; 8():138. PubMed ID: 21070627
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitative Profiling Identifies Potential Regulatory Proteins Involved in Development from Dauer Stage to L4 Stage in Caenorhabditis elegans.
    Kim S; Lee HJ; Hahm JH; Jeong SK; Park DH; Hancock WS; Paik YK
    J Proteome Res; 2016 Feb; 15(2):531-9. PubMed ID: 26751275
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Natural variation in gene expression in the early development of dauer larvae of Caenorhabditis elegans.
    Harvey SC; Barker GL; Shorto A; Viney ME
    BMC Genomics; 2009 Jul; 10():325. PubMed ID: 19615088
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dauer pheromone and G-protein signaling modulate the coordination of intraflagellar transport kinesin motor proteins in C. elegans.
    Burghoorn J; Dekkers MP; Rademakers S; de Jong T; Willemsen R; Swoboda P; Jansen G
    J Cell Sci; 2010 Jun; 123(Pt 12):2077-84. PubMed ID: 20501698
    [TBL] [Abstract][Full Text] [Related]  

  • 9. No Significant Increase in the Δ4- and Δ7-Dafachronic Acid Concentration in the Long-Lived glp-1 Mutant, nor in the Mutants Defective in Dauer Formation.
    Li TM; Liu W; Lu S; Zhang YP; Jia LM; Chen J; Li X; Lei X; Dong MQ
    G3 (Bethesda); 2015 May; 5(7):1473-9. PubMed ID: 25971936
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Goalpha regulates olfactory adaptation by antagonizing Gqalpha-DAG signaling in Caenorhabditis elegans.
    Matsuki M; Kunitomo H; Iino Y
    Proc Natl Acad Sci U S A; 2006 Jan; 103(4):1112-7. PubMed ID: 16418272
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reduced sleep-like quiescence in both hyperactive and hypoactive mutants of the Galphaq Gene egl-30 during lethargus in Caenorhabditis elegans.
    Schwarz J; Bringmann H
    PLoS One; 2013; 8(9):e75853. PubMed ID: 24073282
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heterotrimeric G proteins in C. elegans.
    Bastiani C; Mendel J
    WormBook; 2006 Oct; ():1-25. PubMed ID: 18050432
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chemical Signaling Regulates Axon Regeneration via the GPCR-Gqα Pathway in
    Shimizu T; Sugiura K; Sakai Y; Dar AR; Butcher RA; Matsumoto K; Hisamoto N
    J Neurosci; 2022 Feb; 42(5):720-730. PubMed ID: 34862187
    [TBL] [Abstract][Full Text] [Related]  

  • 14. RSBP-1 is a membrane-targeting subunit required by the Galpha(q)-specific but not the Galpha(o)-specific R7 regulator of G protein signaling in Caenorhabditis elegans.
    Porter MY; Koelle MR
    Mol Biol Cell; 2010 Jan; 21(2):232-43. PubMed ID: 19923320
    [TBL] [Abstract][Full Text] [Related]  

  • 15. NLP-12 engages different UNC-13 proteins to potentiate tonic and evoked release.
    Hu Z; Vashlishan-Murray AB; Kaplan JM
    J Neurosci; 2015 Jan; 35(3):1038-42. PubMed ID: 25609620
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genetic analysis of RGS protein function in Caenorhabditis elegans.
    Chase DL; Koelle MR
    Methods Enzymol; 2004; 389():305-20. PubMed ID: 15313573
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of Caenorhabditis elegans acetylcholine synthesis mutants reveals a temperature-sensitive requirement for cholinergic neuromuscular function.
    Duerr JS; McManus JR; Crowell JA; Rand JB
    Genetics; 2021 Aug; 218(4):. PubMed ID: 34028515
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Caenorhabditis elegans provides an efficient drug screening platform for GNAO1-related disorders and highlights the potential role of caffeine in controlling dyskinesia.
    Di Rocco M; Galosi S; Lanza E; Tosato F; Caprini D; Folli V; Friedman J; Bocchinfuso G; Martire A; Di Schiavi E; Leuzzi V; Martinelli S
    Hum Mol Genet; 2022 Mar; 31(6):929-941. PubMed ID: 34622282
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The developmental timing regulator HBL-1 modulates the dauer formation decision in Caenorhabditis elegans.
    Karp X; Ambros V
    Genetics; 2011 Jan; 187(1):345-53. PubMed ID: 20980238
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genetic mapping of variation in dauer larvae development in growing populations of Caenorhabditis elegans.
    Green JW; Snoek LB; Kammenga JE; Harvey SC
    Heredity (Edinb); 2013 Oct; 111(4):306-13. PubMed ID: 23715016
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.