These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 24220034)

  • 21. Dissociation of nitric oxide from soluble guanylate cyclase and heme-nitric oxide/oxygen binding domain constructs.
    Winger JA; Derbyshire ER; Marletta MA
    J Biol Chem; 2007 Jan; 282(2):897-907. PubMed ID: 17098738
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Crystal structure of the signaling helix coiled-coil domain of the beta1 subunit of the soluble guanylyl cyclase.
    Ma X; Beuve A; van den Akker F
    BMC Struct Biol; 2010 Jan; 10():2. PubMed ID: 20105301
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Heme-assisted S-nitrosation desensitizes ferric soluble guanylate cyclase to nitric oxide.
    Fernhoff NB; Derbyshire ER; Underbakke ES; Marletta MA
    J Biol Chem; 2012 Dec; 287(51):43053-62. PubMed ID: 23093402
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Crystal structures of the catalytic domain of human soluble guanylate cyclase.
    Allerston CK; von Delft F; Gileadi O
    PLoS One; 2013; 8(3):e57644. PubMed ID: 23505436
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Heme flattening is sufficient for signal transduction in the H-NOX family.
    Muralidharan S; Boon EM
    J Am Chem Soc; 2012 Feb; 134(4):2044-6. PubMed ID: 22257139
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Insights into soluble guanylyl cyclase activation derived from improved heme-mimetics.
    Rekowski MVW; Kumar V; Zhou Z; Moschner J; Marazioti A; Bantzi M; Spyroulias GA; van den Akker F; Giannis A; Papapetropoulos A
    J Med Chem; 2013 Nov; 56(21):8948-8952. PubMed ID: 24090476
    [TBL] [Abstract][Full Text] [Related]  

  • 27. An enzyme-linked receptor mechanism for nitric oxide-activated guanylyl cyclase.
    Roy B; Halvey EJ; Garthwaite J
    J Biol Chem; 2008 Jul; 283(27):18841-51. PubMed ID: 18463095
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Structural and functional insights into the heme-binding domain of the human soluble guanylate cyclase α2 subunit and heterodimeric α2β1.
    Wang H; Zhong F; Pan J; Li W; Su J; Huang ZX; Tan X
    J Biol Inorg Chem; 2012 Jun; 17(5):719-30. PubMed ID: 22426988
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Soluble guanylyl cyclase: the nitric oxide receptor.
    Martin E; Berka V; Tsai AL; Murad F
    Methods Enzymol; 2005; 396():478-92. PubMed ID: 16291255
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Nitric oxide. Potentiation of NO-dependent activation of soluble guanylate cyclase--(patho)physiological and pharmacotherapeutical significance].
    Severina IS
    Biomed Khim; 2007; 53(4):385-99. PubMed ID: 18035720
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Efficient expression of human soluble guanylate cyclase in Escherichia coli and its signaling-related interaction with nitric oxide.
    Zhong F; Wang H; Ying T; Huang ZX; Tan X
    Amino Acids; 2010 Jul; 39(2):399-408. PubMed ID: 20063108
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Role of conformational changes in the heme-dependent regulation of human soluble guanylate cyclase.
    Kosarikov DN; Lee JM; Uversky VN; Counts Gerber N
    J Inorg Biochem; 2001 Dec; 87(4):267-76. PubMed ID: 11744065
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mapping of heme-binding domains in soluble guanylyl cyclase beta1 subunit.
    Namiki S; Hirose K; Iino M
    Biochem Biophys Res Commun; 2001 Nov; 288(4):798-804. PubMed ID: 11688978
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Incorporation of tyrosine and glutamine residues into the soluble guanylate cyclase heme distal pocket alters NO and O2 binding.
    Derbyshire ER; Deng S; Marletta MA
    J Biol Chem; 2010 Jun; 285(23):17471-8. PubMed ID: 20231286
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Heme-nitrosyls: electronic structure implications for function in biology.
    Hunt AP; Lehnert N
    Acc Chem Res; 2015 Jul; 48(7):2117-25. PubMed ID: 26114618
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Conformationally distinct five-coordinate heme-NO complexes of soluble guanylate cyclase elucidated by multifrequency electron paramagnetic resonance (EPR).
    Gunn A; Derbyshire ER; Marletta MA; Britt RD
    Biochemistry; 2012 Oct; 51(42):8384-90. PubMed ID: 22985445
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Probing soluble guanylate cyclase activation by CO and YC-1 using resonance Raman spectroscopy.
    Ibrahim M; Derbyshire ER; Marletta MA; Spiro TG
    Biochemistry; 2010 May; 49(18):3815-23. PubMed ID: 20353168
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Structure and regulation of soluble guanylate cyclase.
    Derbyshire ER; Marletta MA
    Annu Rev Biochem; 2012; 81():533-59. PubMed ID: 22404633
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fluorescent fusion proteins of soluble guanylyl cyclase indicate proximity of the heme nitric oxide domain and catalytic domain.
    Haase T; Haase N; Kraehling JR; Behrends S
    PLoS One; 2010 Jul; 5(7):e11617. PubMed ID: 20657650
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Regulation of Neuronal Oxygen Responses in C. elegans Is Mediated through Interactions between Globin 5 and the H-NOX Domains of Soluble Guanylate Cyclases.
    Abergel Z; Chatterjee AK; Zuckerman B; Gross E
    J Neurosci; 2016 Jan; 36(3):963-78. PubMed ID: 26791224
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.