These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 24220040)

  • 21. Activation of visual cortex in REM sleep measured by 24-channel NIRS imaging.
    Igawa M; Atsumi Y; Takahashi K; Shiotsuka S; Hirasawa H; Yamamoto R; Maki A; Yamashita Y; Koizumi H
    Psychiatry Clin Neurosci; 2001 Jun; 55(3):187-8. PubMed ID: 11422835
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fast optical signal in visual cortex: Improving detection by General Linear Convolution Model.
    Chiarelli AM; Di Vacri A; Romani GL; Merla A
    Neuroimage; 2013 Feb; 66():194-202. PubMed ID: 23110889
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Electroencephalographic evidence of sensory gating in the occipital visual cortex.
    Gjini K; Sundaresan K; Boutros NN
    Neuroreport; 2008 Oct; 19(15):1519-22. PubMed ID: 18797309
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Dynamic topographical pattern classification of multichannel prefrontal NIRS signals: II. Online differentiation of mental arithmetic and rest.
    Schudlo LC; Chau T
    J Neural Eng; 2014 Feb; 11(1):016003. PubMed ID: 24311057
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Practicality of wavelength selection to improve signal-to-noise ratio in near-infrared spectroscopy.
    Sato H; Kiguchi M; Kawaguchi F; Maki A
    Neuroimage; 2004 Apr; 21(4):1554-62. PubMed ID: 15050579
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Are VEP correlated fast optical signals detectable in the human adult by non-invasive nearinfrared spectroscopy (NIRS)?
    Syré F; Obrig H; Steinbrink J; Kohl M; Wenzel R; Villringer A
    Adv Exp Med Biol; 2003; 530():421-31. PubMed ID: 14562737
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Comparison of neuronal and hemodynamic measures of the brain response to visual stimulation: an optical imaging study.
    Gratton G; Goodman-Wood MR; Fabiani M
    Hum Brain Mapp; 2001 May; 13(1):13-25. PubMed ID: 11284043
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Correlation of visual-evoked hemodynamic responses and potentials in human brain.
    Näsi T; Kotilahti K; Noponen T; Nissilä I; Lipiäinen L; Meriläinen P
    Exp Brain Res; 2010 May; 202(3):561-70. PubMed ID: 20087579
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Fast and localized event-related optical signals (EROS) in the human occipital cortex: comparisons with the visual evoked potential and fMRI.
    Gratton G; Fabiani M; Corballis PM; Hood DC; Goodman-Wood MR; Hirsch J; Kim K; Friedman D; Gratton E
    Neuroimage; 1997 Oct; 6(3):168-80. PubMed ID: 9344821
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Localization of hemodynamic responses to simple visual stimulation: an fNIRS study.
    Wijeakumar S; Shahani U; Simpson WA; McCulloch DL
    Invest Ophthalmol Vis Sci; 2012 Apr; 53(4):2266-73. PubMed ID: 22427541
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Absolute quantification of oxygenated hemoglobin within the visual cortex with functional near infrared spectroscopy (fNIRS).
    McIntosh MA; Shahani U; Boulton RG; McCulloch DL
    Invest Ophthalmol Vis Sci; 2010 Sep; 51(9):4856-60. PubMed ID: 20357203
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Individual alpha-frequency correlates with amplitude of visual evoked potential and hemodynamic response.
    Koch SP; Koendgen S; Bourayou R; Steinbrink J; Obrig H
    Neuroimage; 2008 Jun; 41(2):233-42. PubMed ID: 18395469
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Influence of visual stimulation on cerebral blood flow and visual evoked potentials in children with migraine with visual aura].
    Biedroń A; Kaciński M
    Przegl Lek; 2010; 67(9):682-7. PubMed ID: 21387805
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Fast optical signal not detected in awake behaving monkeys.
    Radhakrishnan H; Vanduffel W; Deng HP; Ekstrom L; Boas DA; Franceschini MA
    Neuroimage; 2009 Apr; 45(2):410-9. PubMed ID: 19150500
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Performance Prediction for a Near-Infrared Spectroscopy-Brain-Computer Interface Using Resting-State Functional Connectivity of the Prefrontal Cortex.
    Shin J; Im CH
    Int J Neural Syst; 2018 Dec; 28(10):1850023. PubMed ID: 29914312
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Functional activation in diverse regions of the developing brain of human infants.
    Watanabe H; Homae F; Nakano T; Taga G
    Neuroimage; 2008 Nov; 43(2):346-57. PubMed ID: 18691660
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Model-based analysis of rapid event-related functional near-infrared spectroscopy (NIRS) data: a parametric validation study.
    Plichta MM; Heinzel S; Ehlis AC; Pauli P; Fallgatter AJ
    Neuroimage; 2007 Apr; 35(2):625-34. PubMed ID: 17258472
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The effect of spectral filters on VEP and alpha-wave responses.
    Willeford KT; Fimreite V; Ciuffreda KJ
    J Optom; 2016; 9(2):110-7. PubMed ID: 26293969
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Neural and vascular responses to fused binocular stimuli: a VEP and fNIRS study.
    Wijeakumar S; Shahani U; McCulloch DL; Simpson WA
    Invest Ophthalmol Vis Sci; 2012 Aug; 53(9):5881-9. PubMed ID: 22871839
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Topographic mapping of the visual evoked potential after source derivation.
    Carreño-Rimaudo SV; Catelli-Infantosi AF
    Med Prog Technol; 1994; 20(1-2):5-13. PubMed ID: 7968865
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.