These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
315 related articles for article (PubMed ID: 24220197)
1. Effective sulfur and energy recovery from hydrogen sulfide through incorporating an air-cathode fuel cell into chelated-iron process. Sun M; Song W; Zhai LF; Cui YZ J Hazard Mater; 2013 Dec; 263 Pt 2():643-9. PubMed ID: 24220197 [TBL] [Abstract][Full Text] [Related]
2. A fuel-cell-assisted iron redox process for simultaneous sulfur recovery and electricity production from synthetic sulfide wastewater. Zhai LF; Song W; Tong ZH; Sun M J Hazard Mater; 2012 Dec; 243():350-6. PubMed ID: 23149300 [TBL] [Abstract][Full Text] [Related]
3. Role of iron in H(2)S emission behavior during the decomposition of biodegradable substrates in landfill. Du Y; Feng H; Zhang K; Hu LF; Fang CR; Shen DS; Long YY J Hazard Mater; 2014 May; 272():36-41. PubMed ID: 24675612 [TBL] [Abstract][Full Text] [Related]
4. Evaluation of a hybrid physicochemical/biological technology to remove toxic H Velasco A; Morgan-Sagastume JM; González-Sánchez A Chemosphere; 2019 May; 222():732-741. PubMed ID: 30738316 [TBL] [Abstract][Full Text] [Related]
5. Oxidative degradation stability and hydrogen sulfide removal performance of dual-ligand iron chelate of Fe-EDTA/CA. Miao X; Ma Y; Chen Z; Gong H Environ Technol; 2018 Dec; 39(23):3006-3012. PubMed ID: 28828927 [TBL] [Abstract][Full Text] [Related]
6. Acceleration of the Fe(III)EDTA(-) reduction rate in BioDeNO(x) reactors by dosing electron mediating compounds. Maas Pv; Brink Pv; Klapwijk B; Lens P Chemosphere; 2009 Apr; 75(2):243-9. PubMed ID: 18561978 [TBL] [Abstract][Full Text] [Related]
7. H2S(g) removal using a modified, low-ph liquid redox sulfur recovery (LRSR) process with electrochemical regeneration of the Fe catalyst couple. Gendel Y; Levi N; Lahav O Environ Sci Technol; 2009 Nov; 43(21):8315-9. PubMed ID: 19924962 [TBL] [Abstract][Full Text] [Related]
8. Simultaneous removal of sulfide and bicarbonate from synthetic wastewater using an algae-assisted microbial fuel cell. Khandelwal A; Lens PNL Environ Technol; 2024 Sep; 45(21):4181-4190. PubMed ID: 37534576 [TBL] [Abstract][Full Text] [Related]
9. Biogas as a fuel for solid oxide fuel cells and synthesis gas production: effects of ceria-doping and hydrogen sulfide on the performance of nickel-based anode materials. Laycock CJ; Staniforth JZ; Ormerod RM Dalton Trans; 2011 May; 40(20):5494-504. PubMed ID: 21494706 [TBL] [Abstract][Full Text] [Related]
10. Regeneration of Fe Liu Q; Yu K; Yi P; Cao W; Chen X; Zhang X Environ Sci Pollut Res Int; 2019 Jul; 26(19):19540-19548. PubMed ID: 31077045 [TBL] [Abstract][Full Text] [Related]
11. Decolorization of an azo dye Orange G in microbial fuel cells using Fe(II)-EDTA catalyzed persulfate. Niu CG; Wang Y; Zhang XG; Zeng GM; Huang DW; Ruan M; Li XW Bioresour Technol; 2012 Dec; 126():101-6. PubMed ID: 23073095 [TBL] [Abstract][Full Text] [Related]
12. Simultaneous sulfide removal, nitrification, and electricity generation in a microbial fuel cell equipped with an oxic cathode. Bao R; Zhang S; Zhao L; Zhong L Environ Sci Pollut Res Int; 2017 Feb; 24(6):5326-5334. PubMed ID: 28013461 [TBL] [Abstract][Full Text] [Related]
13. The removal of hydrogen sulfide from biogas in a microaerobic biotrickling filter using polypropylene carrier as packing material. Zhou Q; Liang H; Yang S; Jiang X Appl Biochem Biotechnol; 2015 Apr; 175(8):3763-77. PubMed ID: 25701145 [TBL] [Abstract][Full Text] [Related]
14. Activity and stability of pyrolyzed iron ethylenediaminetetraacetic acid as cathode catalyst in microbial fuel cells. Wang L; Liang P; Zhang J; Huang X Bioresour Technol; 2011 Apr; 102(8):5093-7. PubMed ID: 21324675 [TBL] [Abstract][Full Text] [Related]
15. Removal of hydrogen sulfide by sulfate-resistant Acidithiobacillus thiooxidans AZ11. Lee EY; Lee NY; Cho KS; Ryu HW J Biosci Bioeng; 2006 Apr; 101(4):309-14. PubMed ID: 16716938 [TBL] [Abstract][Full Text] [Related]
16. Generation of electricity from FeCl3 pretreatment of rice straw using a fuel cell system. Kim I; Saif Ur Rehman M; Kim KH; Han JI Bioresour Technol; 2013 May; 135():635-9. PubMed ID: 22921252 [TBL] [Abstract][Full Text] [Related]
17. The control of H2S in biogas using iron ores as in situ desulfurizers during anaerobic digestion process. Zhou Q; Jiang X; Li X; Jiang W Appl Microbiol Biotechnol; 2016 Sep; 100(18):8179-89. PubMed ID: 27209038 [TBL] [Abstract][Full Text] [Related]
18. A novel up-flow inner-cycle anoxic bioreactor (UIAB) system for the treatment of sulfide wastewater from purification of biogas. Song Z; Li Q; Wang D; Zhang J; Xing J Water Sci Technol; 2012; 65(6):1033-40. PubMed ID: 22377999 [TBL] [Abstract][Full Text] [Related]
19. Valorizing waste iron powder in biogas production: Hydrogen sulfide control and process performances. Andriamanohiarisoamanana FJ; Shirai T; Yamashiro T; Yasui S; Iwasaki M; Ihara I; Nishida T; Tangtaweewipat S; Umetsu K J Environ Manage; 2018 Feb; 208():134-141. PubMed ID: 29257989 [TBL] [Abstract][Full Text] [Related]
20. Pilot-scale chemical-biological system for efficient H2S removal from biogas. Lin WC; Chen YP; Tseng CP Bioresour Technol; 2013 May; 135():283-91. PubMed ID: 23186660 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]