These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

387 related articles for article (PubMed ID: 24220255)

  • 21. Self-assembling amphiphilic molecules: Synthesis in simulated interstellar/precometary ices.
    Dworkin J; Deamer D; Sandford S; Allamandola L
    Proc Natl Acad Sci U S A; 2001 Jan; 98(3):815-9. PubMed ID: 11158552
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Low-energy electron-induced chemistry of condensed methanol: implications for the interstellar synthesis of prebiotic molecules.
    Boamah MD; Sullivan KK; Shulenberger KE; Soe CM; Jacob LM; Yhee FC; Atkinson KE; Boyer MC; Haines DR; Arumainayagam CR
    Faraday Discuss; 2014; 168():249-66. PubMed ID: 25302384
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The ubiquity of micrometer-sized dust grains in the dense interstellar medium.
    Pagani L; Steinacker J; Bacmann A; Stutz A; Henning T
    Science; 2010 Sep; 329(5999):1622-4. PubMed ID: 20929841
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Gas-Phase vs. Grain-Surface Formation of Interstellar Complex Organic Molecules: A Comprehensive Quantum-Chemical Study.
    Martínez-Bachs B; Rimola A
    Int J Mol Sci; 2023 Nov; 24(23):. PubMed ID: 38069147
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Efficient surface formation route of interstellar hydroxylamine through NO hydrogenation. I. The submonolayer regime on interstellar relevant substrates.
    Congiu E; Chaabouni H; Laffon C; Parent P; Baouche S; Dulieu F
    J Chem Phys; 2012 Aug; 137(5):054713. PubMed ID: 22894377
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Concluding remarks: astrochemistry of dust, ice and gas.
    Herbst E
    Faraday Discuss; 2014; 168():617-34. PubMed ID: 25302400
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Laboratory Studies of Astronomical Ices: Reaction Chemistry and Spectroscopy.
    Materese CK; Gerakines PA; Hudson RL
    Acc Chem Res; 2021 Jan; 54(2):280-290. PubMed ID: 33381961
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Prebiotic Astrochemistry from Astronomical Observations and Laboratory Spectroscopy.
    Ziurys LM
    Annu Rev Phys Chem; 2024 Jun; 75(1):307-327. PubMed ID: 38382568
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Efficient simulations of gas-grain chemistry in interstellar clouds.
    Lipshtat A; Biham O
    Phys Rev Lett; 2004 Oct; 93(17):170601. PubMed ID: 15525059
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cosmic-ray astrochemistry.
    Indriolo N; McCall BJ
    Chem Soc Rev; 2013 Oct; 42(19):7763-73. PubMed ID: 23812538
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Infrared emission spectra of candidate interstellar aromatic molecules.
    Cook DJ; Schlemmer S; Balucani N; Wagner DR; Steiner B; Saykally RJ
    Nature; 1996 Mar; 380(6571):227-9. PubMed ID: 8637570
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Kinetic Monte Carlo simulations of water ice porosity: extrapolations of deposition parameters from the laboratory to interstellar space.
    Clements AR; Berk B; Cooke IR; Garrod RT
    Phys Chem Chem Phys; 2018 Feb; 20(8):5553-5568. PubMed ID: 29387847
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Interstellar matrices: the chemical composition and evolution of interstellar ices as observed by ISO.
    d'Hendecourt L; Dartois E
    Spectrochim Acta A Mol Biomol Spectrosc; 2001 Mar; 57(4):669-84. PubMed ID: 11345246
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Challenges in modelling the reaction chemistry of interstellar dust.
    Bromley ST; Goumans TP; Herbst E; Jones AP; Slater B
    Phys Chem Chem Phys; 2014 Sep; 16(35):18623-43. PubMed ID: 24937663
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Quantum chemical protocols for modeling reactions and spectra in astrophysical ice analogs: the challenging case of the C⁺ + H₂O reaction in icy grain mantles.
    Woon DE
    Phys Chem Chem Phys; 2015 Nov; 17(43):28705-18. PubMed ID: 26445904
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Electron induced chemistry: a new frontier in astrochemistry.
    Mason NJ; Nair B; Jheeta S; Szymańska E
    Faraday Discuss; 2014; 168():235-47. PubMed ID: 25302383
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Astroelectrochemistry: the role of redox reactions in cosmic dust chemistry.
    Caruana DJ; Holt KB
    Phys Chem Chem Phys; 2010 Apr; 12(13):3072-9. PubMed ID: 20237693
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Spectroscopic evidence for interstellar ices in comet Hyakutake.
    Irvine WM; Bockelee-Morvan D; Lis DC; Matthews HE; Biver N; Crovisier J; Davies JK; Dent WR; Gautier D; Godfrey PD; Keene J; Lovell AJ; Owen TC; Phillips TG; Rauer H; Schloerb FP; Senay M; Young K
    Nature; 1996 Oct; 383(6599):418-20. PubMed ID: 8837771
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The evolution of organic matter in space.
    Ehrenfreund P; Spaans M; Holm NG
    Philos Trans A Math Phys Eng Sci; 2011 Feb; 369(1936):538-54. PubMed ID: 21220279
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Organic molecules in translucent interstellar clouds.
    Krełowski J
    Orig Life Evol Biosph; 2014 Sep; 44(3):175-83. PubMed ID: 25467771
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.