These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

461 related articles for article (PubMed ID: 2422053)

  • 1. The pyruvate branchpoint in the anaerobic energy metabolism of the jumping cockle Cardium tuberculatum L.: D-lactate formation during environmental anaerobiosis versus octopine formation during exercise.
    Meinardus-Hager G; Gäde G
    Exp Biol; 1986; 45(2):91-110. PubMed ID: 2422053
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metabolic adaptations of intertidal invertebrates to environmental hypoxia (a comparison of environmental anoxia to exercise anoxia).
    De Zwaan A; Putzer V
    Symp Soc Exp Biol; 1985; 39():33-62. PubMed ID: 3914721
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Anaerobic metabolism of the common cockle, Cardium edule. I.--The utilization of glycogen and accumulation of multiple end products.
    Gäde G
    Arch Int Physiol Biochim; 1975 Dec; 83(5):879-86. PubMed ID: 58607
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Octopine as an end product of anaerobic glycolysis in the chambered nautilus.
    Hochachka PW; Hartline PH; Fields JH
    Science; 1977 Jan; 195(4273):72-4. PubMed ID: 831256
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Control of D-octopine formation in scallop adductor muscle as revealed through thermodynamic studies of octopine dehydrogenase.
    van Os N; Smits SH; Schmitt L; Grieshaber MK
    J Exp Biol; 2012 May; 215(Pt 9):1515-22. PubMed ID: 22496288
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Anaerobic metabolism of the common cockle, Cardium edule. II. Partial purification and properties of lactate dehydrogenase and octopine dehydrogenase. A comparative study.
    Gäde G; Grieshaber M
    Arch Int Physiol Biochim; 1976 Oct; 84(4):735-52. PubMed ID: 65949
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The maximum activities of hexokinase, phosphorylase, phosphofructokinase, glycerol phosphate dehydrogenases, lactate dehydrogenase, octopine dehydrogenase, phosphoenolpyruvate carboxykinase, nucleoside diphosphatekinase, glutamate-oxaloacetate transaminase and arginine kinase in relation to carbohydrate utilization in muscles from marine invertebrates.
    Zammit VA; Newsholme EA
    Biochem J; 1976 Dec; 160(3):447-62. PubMed ID: 13783
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Facultative anaerobiosis in molluscs.
    de Zwaan A; Kluytmans JH; Zandee DI
    Biochem Soc Symp; 1976; (41):133-168. PubMed ID: 9940
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The anaerobic molluscan heart: adaptation to environmental anoxia. Comparison with energy metabolism in vertebrate hearts.
    Gäde G; Ellington WR
    Comp Biochem Physiol A Comp Physiol; 1983; 76(3):615-20. PubMed ID: 6139232
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ENERGETICS OF CONTRACTILE ACTIVITY IN ISOLATED RADULA PROTRACTOR MUSCLES OF THE WHELK BUSYCON CONTRARIUM: ANAEROBIC END PRODUCT ACCUMULATION AND RELEASE.
    Wiseman RW; Ellington WR
    Biol Bull; 1987 Aug; 173(1):277-288. PubMed ID: 29314990
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anaerobic threshold: review of the concept and directions for future research.
    Brooks GA
    Med Sci Sports Exerc; 1985 Feb; 17(1):22-34. PubMed ID: 3884959
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multiple forms of octopine dehydrogenase in Strombus luhuanus (mollusca, gastropoda, strombidae): genetic basis of polymorphism, properties of the enzymes, and relationship between the octopine dehydrogenase phenotype and the accumulation of anaerobic end products during exercise.
    Baldwin J; England WR
    Biochem Genet; 1982 Oct; 20(9-10):1015-25. PubMed ID: 7181845
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Possible contribution of amino-acids in myocardium response to hypoxia (author's transl)].
    Fréminet A; Leclerc L; Poyart C
    J Physiol (Paris); 1980; 76(7):677-91. PubMed ID: 7012300
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation of liver lactate dehydrogenase by reversible phosphorylation in response to anoxia in a freshwater turtle.
    Xiong ZJ; Storey KB
    Comp Biochem Physiol B Biochem Mol Biol; 2012 Oct; 163(2):221-8. PubMed ID: 22735190
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enzyme mechanisms for pyruvate-to-lactate flux attenuation: a study of Sherpas, Quechuas, and hummingbirds.
    Hochachka PW; Stanley C; McKenzie DC; Villena A; Monge C
    Int J Sports Med; 1992 Oct; 13 Suppl 1():S119-22. PubMed ID: 1483747
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Uncovering the metabolic response of abalone (Haliotis midae) to environmental hypoxia through metabolomics.
    Venter L; Loots DT; Mienie LJ; Jansen van Rensburg PJ; Mason S; Vosloo A; Lindeque JZ
    Metabolomics; 2018 Mar; 14(4):49. PubMed ID: 30830330
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Environmental and functional limits to muscular exercise and body size in marine invertebrate athletes.
    Pörtner HO
    Comp Biochem Physiol A Mol Integr Physiol; 2002 Oct; 133(2):303-21. PubMed ID: 12208302
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protons and anaerobiosis.
    Hochachka PW; Mommsen TP
    Science; 1983 Mar; 219(4591):1391-7. PubMed ID: 6298937
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Determination of meso-alanopine and D-strombine by high pressure liquid chromatography in extracts from marine invertebrates.
    Siegmund B; Grieshaber MK
    Hoppe Seylers Z Physiol Chem; 1983 Jul; 364(7):807-12. PubMed ID: 6194095
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Organ-specific control of glycolysis in anoxic turtles.
    Kelly DA; Storey KB
    Am J Physiol; 1988 Nov; 255(5 Pt 2):R774-9. PubMed ID: 2973250
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.