BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

644 related articles for article (PubMed ID: 24220671)

  • 1. Synthesis of silver nanocubes as a SERS substrate for the determination of pesticide paraoxon and thiram.
    Wang B; Zhang L; Zhou X
    Spectrochim Acta A Mol Biomol Spectrosc; 2014; 121():63-9. PubMed ID: 24220671
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis of silver nanowires as a SERS substrate for the detection of pesticide thiram.
    Zhang L; Wang B; Zhu G; Zhou X
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Dec; 133():411-6. PubMed ID: 24973781
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel paper rag as 'D-SERS' substrate for detection of pesticide residues at various peels.
    Zhu Y; Li M; Yu D; Yang L
    Talanta; 2014 Oct; 128():117-24. PubMed ID: 25059138
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The time-resolved D-SERS vibrational spectra of pesticide thiram.
    Li P; Liu H; Yang L; Liu J
    Talanta; 2013 Dec; 117():39-44. PubMed ID: 24209307
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High Surface-Enhanced Raman Scattering (SERS) Amplification Factor Obtained with Silver Printed Circuit Boards and the Influence of Phenolic Resins for the Characterization of the Pesticide Thiram.
    Silva de Almeida F; Bussler L; Marcio Lima S; Fiorucci AR; da Cunha Andrade LH
    Appl Spectrosc; 2016 Jul; 70(7):1157-64. PubMed ID: 27279502
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A surface-enhanced Raman scattering method for detection of trace glutathione on the basis of immobilized silver nanoparticles and crystal violet probe.
    Ouyang L; Zhu L; Jiang J; Tang H
    Anal Chim Acta; 2014 Mar; 816():41-9. PubMed ID: 24580853
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polystyrene/Ag nanoparticles as dynamic surface-enhanced Raman spectroscopy substrates for sensitive detection of organophosphorus pesticides.
    Li P; Dong R; Wu Y; Liu H; Kong L; Yang L
    Talanta; 2014 Sep; 127():269-75. PubMed ID: 24913887
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Plasmonic core-shell nanoparticles for SERS detection of the pesticide thiram: size- and shape-dependent Raman enhancement.
    Guo P; Sikdar D; Huang X; Si KJ; Xiong W; Gong S; Yap LW; Premaratne M; Cheng W
    Nanoscale; 2015 Feb; 7(7):2862-8. PubMed ID: 25599516
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Flexible and transparent Surface Enhanced Raman Scattering (SERS)-Active Ag NPs/PDMS composites for in-situ detection of food contaminants.
    Alyami A; Quinn AJ; Iacopino D
    Talanta; 2019 Aug; 201():58-64. PubMed ID: 31122461
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Plasmonic 3D Semiconductor-Metal Nanopore Arrays for Reliable Surface-Enhanced Raman Scattering Detection and In-Site Catalytic Reaction Monitoring.
    Zhang M; Chen T; Liu Y; Zhang J; Sun H; Yang J; Zhu J; Liu J; Wu Y
    ACS Sens; 2018 Nov; 3(11):2446-2454. PubMed ID: 30335972
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ag nanocubes monolayer-modified PDMS as flexible SERS substrates for pesticides sensing.
    Xia D; Jiang P; Cai Z; Zhou R; Tu B; Gao N; Chang G; He H; He Y
    Mikrochim Acta; 2022 May; 189(6):232. PubMed ID: 35614151
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High performance gold nanorods and silver nanocubes in surface-enhanced Raman spectroscopy of pesticides.
    Costa JC; Ando RA; Sant'Ana AC; Rossi LM; Santos PS; Temperini ML; Corio P
    Phys Chem Chem Phys; 2009 Sep; 11(34):7491-8. PubMed ID: 19690724
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Graphene oxide embedded sandwich nanostructures for enhanced Raman readout and their applications in pesticide monitoring.
    Zhang L; Jiang C; Zhang Z
    Nanoscale; 2013 May; 5(9):3773-9. PubMed ID: 23535912
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ag@Au core-shell nanoparticles synthesized by pulsed laser ablation in water: Effect of plasmon coupling and their SERS performance.
    Vinod M; Gopchandran KG
    Spectrochim Acta A Mol Biomol Spectrosc; 2015; 149():913-9. PubMed ID: 26004101
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interaction of DNA bases with silver nanoparticles: assembly quantified through SPRS and SERS.
    Basu S; Jana S; Pande S; Pal T
    J Colloid Interface Sci; 2008 May; 321(2):288-93. PubMed ID: 18346751
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Highly Efficient Photoinduced Enhanced Raman Spectroscopy (PIERS) from Plasmonic Nanoparticles Decorated 3D Semiconductor Arrays for Ultrasensitive, Portable, and Recyclable Detection of Organic Pollutants.
    Zhang M; Sun H; Chen X; Yang J; Shi L; Chen T; Bao Z; Liu J; Wu Y
    ACS Sens; 2019 Jun; 4(6):1670-1681. PubMed ID: 31117365
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surface-enhanced Raman scattering detection of cholinesterase inhibitors.
    Liron Z; Zifman A; Heleg-Shabtai V
    Anal Chim Acta; 2011 Oct; 703(2):234-8. PubMed ID: 21889639
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Synthesis and SERS characterization of silver nanocubes].
    Zhou HH; Wu DY; Hu JQ; Tian ZQ
    Guang Pu Xue Yu Guang Pu Fen Xi; 2005 Jul; 25(7):1068-70. PubMed ID: 16241057
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Highly Sensitive and Reproducible SERS Performance from Uniform Film Assembled by Magnetic Noble Metal Composite Microspheres.
    Niu C; Zou B; Wang Y; Cheng L; Zheng H; Zhou S
    Langmuir; 2016 Jan; 32(3):858-63. PubMed ID: 26731200
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surface-enhanced Raman spectroscopy using silver nanoparticles on a precoated microscope slide.
    Li YS; Cheng J; Chung KT
    Spectrochim Acta A Mol Biomol Spectrosc; 2008 Feb; 69(2):524-7. PubMed ID: 17631042
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 33.