BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 24220864)

  • 1. Characterization of vacuolar polypeptides of barley mesophyll cells by two-dimensional gel electrophoresis and by their affinity to lectins.
    Dietz KJ; Kaiser G; Martinoia E
    Planta; 1988 Dec; 176(3):362-7. PubMed ID: 24220864
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Polypeptide pattern and enzymic character of vacuoles isolated from barley mesophyll protoplasts.
    Kaiser G; Martinoia E; Schmitt JM; Hincha DK; Heber U
    Planta; 1986 Nov; 169(3):345-55. PubMed ID: 24232646
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of the epidermis from barley primary leaves : I. Isolation of epidermal protoplasts.
    Dietz KJ; Schramm M; Betz M; Busch H; Dürr C; Martinoia E
    Planta; 1992 Jul; 187(4):425-30. PubMed ID: 24178135
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Immunological characterization of two dominant tonoplast polypeptides.
    Betz M; Dietz KJ
    Plant Physiol; 1991 Dec; 97(4):1294-301. PubMed ID: 16668546
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of a vacuolar sucrose transporter in barley and Arabidopsis mesophyll cells by a tonoplast proteomic approach.
    Endler A; Meyer S; Schelbert S; Schneider T; Weschke W; Peters SW; Keller F; Baginsky S; Martinoia E; Schmidt UG
    Plant Physiol; 2006 May; 141(1):196-207. PubMed ID: 16581873
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrophoretic analysis of protoplast, vacuole, and tonoplast vesicle proteins in crassulacean Acid metabolism plants.
    Kenyon WH; Black CC
    Plant Physiol; 1986 Dec; 82(4):916-24. PubMed ID: 16665166
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of tonoplast polypeptides isolated from corn seedling roots.
    Ni M; Beevers L
    Plant Physiol; 1991 Sep; 97(1):264-72. PubMed ID: 16668381
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reappearance of hydrolytic activities and tonoplast proteins in the regenerated vacuole of evacuolated protoplasts.
    Hörtensteiner S; Martinoia E; Amrhein N
    Planta; 1992 Apr; 187(1):113-21. PubMed ID: 24177975
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effects of salt stress on polypeptides in membrane fractions from barley roots.
    Hurkman WJ; Tanaka CK; Dupont FM
    Plant Physiol; 1988 Dec; 88(4):1263-73. PubMed ID: 16666453
    [TBL] [Abstract][Full Text] [Related]  

  • 10. How plants dispose of chlorophyll catabolites. Directly energized uptake of tetrapyrrolic breakdown products into isolated vacuoles.
    Hinder B; Schellenberg M; Rodoni S; Ginsburg S; Vogt E; Martinoia E; Matile P; Hörtensteiner S
    J Biol Chem; 1996 Nov; 271(44):27233-6. PubMed ID: 8910294
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Visualization of vacuoplasts in isolated vacuole preparations from mesophyll protoplasts of periwinkle [Catharanthus roseus (L.) G. Don].
    McCaskill D; Scott AI
    Plant Cell Rep; 1992 Jun; 11(5-6):310-3. PubMed ID: 24203146
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phosphate transport across biomembranes and cytosolic phosphate homeostasis in barley leaves.
    Mimura T; Dietz KJ; Kaiser W; Schramm MJ; Kaiser G; Heber U
    Planta; 1990 Jan; 180(2):139-46. PubMed ID: 24201937
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vitro and in vivo phosphorylation of polypeptides in plasma membrane and tonoplast-enriched fractions from barley roots.
    Garbarino JE; Hurkman WJ; Tanaka CK; Dupont FM
    Plant Physiol; 1991 Apr; 95(4):1219-28. PubMed ID: 16668115
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vivo phosphorylation sites of barley tonoplast proteins identified by a phosphoproteomic approach.
    Endler A; Reiland S; Gerrits B; Schmidt UG; Baginsky S; Martinoia E
    Proteomics; 2009 Jan; 9(2):310-21. PubMed ID: 19142958
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Subunit C of the vacuolar H+-ATPase of Hordeum vulgare.
    Tavakoli N; Eckerskorn C; Golldack D; Dietz KJ
    FEBS Lett; 1999 Jul; 456(1):68-72. PubMed ID: 10452532
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Flavonoid biosynthesis in barley primary leaves requires the presence of the vacuole and controls the activity of vacuolar flavonoid transport.
    Marinova K; Kleinschmidt K; Weissenböck G; Klein M
    Plant Physiol; 2007 May; 144(1):432-44. PubMed ID: 17369433
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inositol Trisphosphate Metabolism in Subcellular Fractions of Barley (Hordeum vulgare L.) Mesophyll Cells.
    Martinoia E; Locher R; Vogt E
    Plant Physiol; 1993 May; 102(1):101-105. PubMed ID: 12231801
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The polymorphism and structural homology of storage polypeptides (hordein) coded by the Hor-2 locus in barley (Hordeum vulgare L).
    Faulks AJ; Shewry PR; Miflin BJ
    Biochem Genet; 1981 Oct; 19(9-10):841-58. PubMed ID: 7332526
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reconstitution of the tonoplast amino-acid carrier into liposomes : Evidence for an ATP-regulated carrier in different species.
    Thume M; Dietz KJ
    Planta; 1991 Nov; 185(4):569-75. PubMed ID: 24186536
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Amino Acid Transport across the Tonoplast of Vacuoles Isolated from Barley Mesophyll Protoplasts : Uptake of Alanine, Leucine, and Glutamine.
    Dietz KJ; Jäger R; Kaiser G; Martinoia E
    Plant Physiol; 1990 Jan; 92(1):123-9. PubMed ID: 16667233
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.