These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 24220978)

  • 61. Development of a model estimating root length density from root impacts on a soil profile in pearl millet (Pennisetum glaucum (L.) R. Br). Application to measure root system response to water stress in field conditions.
    Faye A; Sine B; Chopart JL; Grondin A; Lucas M; Diedhiou AG; Gantet P; Cournac L; Min D; Audebert A; Kane A; Laplaze L
    PLoS One; 2019; 14(7):e0214182. PubMed ID: 31329591
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Development and characterization of a high temperature stress responsive subtractive cDNA library in Pearl Millet Pennisetum glaucum (L.) R.Br.
    James D; Tarafdar A; Biswas K; Sathyavathi TC; Padaria JC; Kumar PA
    Indian J Exp Biol; 2015 Aug; 53(8):543-50. PubMed ID: 26349318
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Chromosome elimination by wide hybridization between Triticeae or oat plant and pearl millet: pearl millet chromosome dynamics in hybrid embryo cells.
    Ishii T; Ueda T; Tanaka H; Tsujimoto H
    Chromosome Res; 2010 Nov; 18(7):821-31. PubMed ID: 20953694
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Histology of, and physical factors affecting, transient GUS expression in pearl millet (Pennisetum glaucum (L.) R. Br.) embryos following microprojectile bombardment.
    Taylor MG; Vasil IK
    Plant Cell Rep; 1991 Jun; 10(3):120-5. PubMed ID: 24221489
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Substoichiometric shifting in the fertility reversion of cytoplasmic male sterile pearl millet.
    Feng X; Kaur AP; Mackenzie SA; Dweikat IM
    Theor Appl Genet; 2009 May; 118(7):1361-70. PubMed ID: 19234685
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Heterotic pools in African and Asian origin populations of pearl millet [Pennisetum glaucum (L.) R. Br.].
    Patil KS; Mungra KD; Danam S; Vemula AK; Das RR; Rathore A; Gupta SK
    Sci Rep; 2021 Jun; 11(1):12197. PubMed ID: 34108516
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Genome size analysis of field grown and somatic embryo regenerated plants in Allium sativum L.
    Malik MQ; Mujib A; Gulzar B; Zafar N; Syeed R; Mamgain J; Ejaz B
    J Appl Genet; 2020 Feb; 61(1):25-35. PubMed ID: 31919659
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Biochemical and molecular analysis of plants derived from embryogenic tissue cultures of napier grass (Pennisetum purpureum K. Schum).
    Shenoy VB; Vasil IK
    Theor Appl Genet; 1992 May; 83(8):947-55. PubMed ID: 24202918
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Farmers' perceptions of fodder performances of pearl millet (
    Moussa H; Kindomihou V; Houehanou TD; Chaibou M; Souleymane O; Soumana I; Dossou J; Sinsin B
    Heliyon; 2021 Sep; 7(9):e07965. PubMed ID: 34611557
    [TBL] [Abstract][Full Text] [Related]  

  • 70. [Correlation between germination and adult stage under water stress in some Tunisian autochthonous pearl millet ecotypes (Pennisetum glaucum (L.) R. Br.)].
    Radhouane L
    C R Biol; 2008 Aug; 331(8):623-30. PubMed ID: 18606392
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Molecular and biochemical characterization of dehydroascorbate reductase from a stress adapted C4 plant, pearl millet [Pennisetum glaucum (L.) R. Br].
    Pandey P; Achary VM; Kalasamudramu V; Mahanty S; Reddy GM; Reddy MK
    Plant Cell Rep; 2014 Mar; 33(3):435-45. PubMed ID: 24317405
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Fermented pearl millet (Pennisetum glaucum) with in vitro DNA damage protection activity, bioactive compounds and antioxidant potential.
    Salar RK; Purewal SS; Sandhu KS
    Food Res Int; 2017 Oct; 100(Pt 2):204-210. PubMed ID: 28888442
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Somaclonal variation in soybean plants regenerated from tissue culture.
    Freytag AH; Rao-Arelli AP; Anand SC; Wrather JA; Owens LD
    Plant Cell Rep; 1989 Apr; 8(4):199-202. PubMed ID: 24233135
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Characterization of biomass production, cytology and phenotypes of plants regenerated from embryogenic callus cultures of Pennisetum americanum x P. purpureum (hybrid triploid napiergrass).
    Rajasekaran K; Schank SC; Vasil IK
    Theor Appl Genet; 1986 Nov; 73(1):4-10. PubMed ID: 24240739
    [TBL] [Abstract][Full Text] [Related]  

  • 75. New sources of dwarfing genes in pearl millet (Pennisetum americanum).
    Appa Rao S; Mengesha MH; Reddy CR
    Theor Appl Genet; 1986 Dec; 73(2):170-4. PubMed ID: 24240847
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Screening for grain polyphenol variants from high-tannin sorghum somaclones.
    Cai T; Ejeta G; Butler LG
    Theor Appl Genet; 1995 Feb; 90(2):211-20. PubMed ID: 24173893
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Analysis of lipid composition and morphological characteristics in soybean regenerants.
    Hildebrand DF; Adams TR; Dahmer ML; Williams EG; Collins GB
    Plant Cell Rep; 1989 Mar; 7(8):701-3. PubMed ID: 24240466
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Somaclonal variation inLolium multiflorum L. andL. temulentum L.
    Jackson JA; Dale PJ
    Plant Cell Rep; 1989 Mar; 8(3):161-4. PubMed ID: 24233094
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Partitioning of variation derived from tissue culture of winter wheat.
    Carver BF; Johnson BB
    Theor Appl Genet; 1989 Sep; 78(3):405-10. PubMed ID: 24227249
    [TBL] [Abstract][Full Text] [Related]  

  • 80. An unstable anthocyanin mutation recovered from tissue culture of alfalfa (Medicago sativa) : 1. High frequency of reversion upon reculture.
    Groose RW; Bingham ET
    Plant Cell Rep; 1986 Apr; 5(2):104-7. PubMed ID: 24248045
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.