These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

73 related articles for article (PubMed ID: 24220993)

  • 21. Modeling of composite latex particle morphology by off-lattice Monte Carlo simulation.
    Duda Y; Vázquez F
    Langmuir; 2005 Feb; 21(3):1096-102. PubMed ID: 15667196
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Monte Carlo simulations of charge transport in organic systems with true off-diagonal disorder.
    Jakobsson M; Linares M; Stafström S
    J Chem Phys; 2012 Sep; 137(11):114901. PubMed ID: 22998284
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Improved quantum efficiency of highly efficient perovskite BaSnO₃-based dye-sensitized solar cells.
    Shin SS; Kim JS; Suk JH; Lee KD; Kim DW; Park JH; Cho IS; Hong KS; Kim JY
    ACS Nano; 2013 Feb; 7(2):1027-35. PubMed ID: 23316913
    [TBL] [Abstract][Full Text] [Related]  

  • 24. An efficient framework for photon Monte Carlo treatment planning.
    Fix MK; Manser P; Frei D; Volken W; Mini R; Born EJ
    Phys Med Biol; 2007 Oct; 52(19):N425-37. PubMed ID: 17881793
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A Triphenylamine-Based Conjugated Polymer with Donor-π-Acceptor Architecture as Organic Sensitizer for Dye-Sensitized Solar Cells.
    Zhang W; Fang Z; Su M; Saeys M; Liu B
    Macromol Rapid Commun; 2009 Sep; 30(18):1533-7. PubMed ID: 21638416
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Multiple "time step" Monte Carlo simulations: application to charged systems with Ewald summation.
    Bernacki K; Hetenyi B; Berne BJ
    J Chem Phys; 2004 Jul; 121(1):44-50. PubMed ID: 15260521
    [TBL] [Abstract][Full Text] [Related]  

  • 27. EPOTRAN: a full-differential Monte Carlo code for electron and positron transport in liquid and gaseous water.
    Champion C; Le Loirec C; Stosic B
    Int J Radiat Biol; 2012 Jan; 88(1-2):54-61. PubMed ID: 22098415
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Charge transport in nanoscale junctions.
    Albrecht T; Kornyshev A; Bjørnholm T
    J Phys Condens Matter; 2008 Sep; 20(37):370301. PubMed ID: 21694407
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Transient absorption studies and numerical modeling of iodine photoreduction by nanocrystalline TiO2 films.
    Green AN; Chandler RE; Haque SA; Nelson J; Durrant JR
    J Phys Chem B; 2005 Jan; 109(1):142-50. PubMed ID: 16850997
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Applications of light scattering in dye-sensitized solar cells.
    Zhang Q; Myers D; Lan J; Jenekhe SA; Cao G
    Phys Chem Chem Phys; 2012 Nov; 14(43):14982-98. PubMed ID: 23042288
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [The Monte Carlo method and parallel estimation in the drawing up of radiosurgery treatment plans].
    Scielzo G; Grillo Ruggieri F; Schwarz M; Rivolta A; Brunelli B; Surridge M; Gill A; Rietbrock C
    Radiol Med; 1998 Jun; 95(6):647-55. PubMed ID: 9717550
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Charge separation at disordered semiconductor heterojunctions from random walk numerical simulations.
    Mandujano-Ramírez HJ; González-Vázquez JP; Oskam G; Dittrich T; Garcia-Belmonte G; Mora-Seró I; Bisquert J; Anta JA
    Phys Chem Chem Phys; 2014 Mar; 16(9):4082-91. PubMed ID: 24448680
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dynamic Monte Carlo modeling of exciton dissociation in organic donor-acceptor solar cells.
    Heiber MC; Dhinojwala A
    J Chem Phys; 2012 Jul; 137(1):014903. PubMed ID: 22779679
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Heterogeneous electron transfer from dye-sensitized nanocrystalline TiO2 to [Co(bpy)3]3+: insights gained from impedance spectroscopy.
    Liu Y; Jennings JR; Zakeeruddin SM; Grätzel M; Wang Q
    J Am Chem Soc; 2013 Mar; 135(10):3939-52. PubMed ID: 23425317
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Electronic and optical properties of dye-sensitized TiO₂ interfaces.
    Pastore M; Selloni A; Fantacci S; De Angelis F
    Top Curr Chem; 2014; 347():1-45. PubMed ID: 24488437
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Iodine/iodide-free dye-sensitized solar cells.
    Yanagida S; Yu Y; Manseki K
    Acc Chem Res; 2009 Nov; 42(11):1827-38. PubMed ID: 19877690
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fabrication of a multi-scale nanostructure of TiO(2) for application in dye-sensitized solar cells.
    Kuo CY; Lu SY
    Nanotechnology; 2008 Mar; 19(9):095705. PubMed ID: 21817687
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Random nanowires of nickel doped TiO2 with high surface area and electron mobility for high efficiency dye-sensitized solar cells.
    Archana PS; Naveen Kumar E; Vijila C; Ramakrishna S; Yusoff MM; Jose R
    Dalton Trans; 2013 Jan; 42(4):1024-32. PubMed ID: 23108373
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Femtosecond to millisecond studies of electron transfer processes in a donor-(π-spacer)-acceptor series of organic dyes for solar cells interacting with titania nanoparticles and ordered nanotube array films.
    Ziółek M; Cohen B; Yang X; Sun L; Paulose M; Varghese OK; Grimes CA; Douhal A
    Phys Chem Chem Phys; 2012 Feb; 14(8):2816-31. PubMed ID: 22258566
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A hybrid PVDF-HFP/nanoparticle gel electrolyte for dye-sensitized solar cell applications.
    Lee YL; Shen YJ; Yang YM
    Nanotechnology; 2008 Nov; 19(45):455201. PubMed ID: 21832763
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.