These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 24221096)

  • 1. Simultaneous estimation ofV max, K m, and the rate of endogenous substrate production (R) from substrate depletion data.
    Robinson JA; Characklis WG
    Microb Ecol; 1984 Jun; 10(2):165-78. PubMed ID: 24221096
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Accurate kinetic parameter estimation during progress curve analysis of systems with endogenous substrate production.
    Goudar CT
    Biotechnol Bioeng; 2011 Oct; 108(10):2499-503. PubMed ID: 21520020
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of various estimation methods for the parameters of Michaelis-Menten equation based on
    Cho YS; Lim HS
    Transl Clin Pharmacol; 2018 Mar; 26(1):39-47. PubMed ID: 32055546
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The comparison of the estimation of enzyme kinetic parameters by fitting reaction curve to the integrated Michaelis-Menten rate equations of different predictor variables.
    Liao F; Zhu XY; Wang YM; Zuo YP
    J Biochem Biophys Methods; 2005 Jan; 62(1):13-24. PubMed ID: 15656940
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nonlinear estimation of Monod growth kinetic parameters from a single substrate depletion curve.
    Robinson JA; Tiedje JM
    Appl Environ Microbiol; 1983 May; 45(5):1453-8. PubMed ID: 6870238
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An explicit solution for progress curve analysis in systems characterized by endogenous substrate production.
    Goudar CT
    Microb Ecol; 2012 May; 63(4):898-904. PubMed ID: 22198685
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetic substrate quantification by fitting the enzyme reaction curve to the integrated Michaelis-Menten equation.
    Liao F; Tian KC; Yang X; Zhou QX; Zeng ZC; Zuo YP
    Anal Bioanal Chem; 2003 Mar; 375(6):756-62. PubMed ID: 12664174
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exact and approximate solutions for the decades-old Michaelis-Menten equation: Progress-curve analysis through integrated rate equations.
    Goličnik M
    Biochem Mol Biol Educ; 2011; 39(2):117-25. PubMed ID: 21445903
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Parameter estimation using a direct solution of the integrated Michaelis-Menten equation.
    Goudar CT; Sonnad JR; Duggleby RG
    Biochim Biophys Acta; 1999 Jan; 1429(2):377-83. PubMed ID: 9989222
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The reliability of Michaelis constants and maximum velocities estimated by using the integrated Michaelis-Menten equation.
    Atkins GL; Nimmo IA
    Biochem J; 1973 Dec; 135(4):779-84. PubMed ID: 4778274
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetics of hydrogen consumption by rumen fluid, anaerobic digestor sludge, and sediment.
    Robinson JA; Tiedje JM
    Appl Environ Microbiol; 1982 Dec; 44(6):1374-84. PubMed ID: 16346154
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Novel differential elimination method for determining kinetic coefficients under substrate self-inhibition.
    Park S; Rittmann BE; Bae W
    Biodegradation; 2010 Apr; 21(2):203-16. PubMed ID: 19768559
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Statistical analysis of nonlinear parameter estimation for Monod biodegradation kinetics using bivariate data.
    Knightes CD; Peters CA
    Biotechnol Bioeng; 2000 Jul; 69(2):160-70. PubMed ID: 10861395
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Progress curve analysis for enzyme and microbial kinetic reactions using explicit solutions based on the Lambert W function.
    Goudar CT; Harris SK; McInerney MJ; Suflita JM
    J Microbiol Methods; 2004 Dec; 59(3):317-26. PubMed ID: 15488275
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Validity of the Michaelis-Menten equation--steady-state or reactant stationary assumption: that is the question.
    Schnell S
    FEBS J; 2014 Jan; 281(2):464-72. PubMed ID: 24245583
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Half-time analysis of the integrated Michaelis equation. Simulation and use of the half-time plot and its direct linear variant in the analysis of some alpha-chymotrypsin, papain- and fumarase-catalysed reactions.
    Wharton CW; Szawelski RJ
    Biochem J; 1982 May; 203(2):351-60. PubMed ID: 7115291
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spreadsheet method for evaluation of biochemical reaction rate coefficients and their uncertainties by weighted nonlinear least-squares analysis of the integrated monod equation.
    Smith LH; McCarty PL; Kitanidis PK
    Appl Environ Microbiol; 1998 Jun; 64(6):2044-50. PubMed ID: 9603812
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Application of the median method to estimate the kinetic constants of the substrate uncompetitive inhibition equation.
    Valencia PL; Astudillo-Castro C; Gajardo D; Flores S
    J Theor Biol; 2017 Apr; 418():122-128. PubMed ID: 28130095
    [TBL] [Abstract][Full Text] [Related]  

  • 19. renz: An R package for the analysis of enzyme kinetic data.
    Aledo JC
    BMC Bioinformatics; 2022 May; 23(1):182. PubMed ID: 35578161
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.