These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 24221165)

  • 41. Cytogenetics of Triticum x Dasypyrum hybrids and derived lines.
    Minelli S; Ceccarelli M; Mariani M; De Pace C; Cionini PG
    Cytogenet Genome Res; 2005; 109(1-3):385-92. PubMed ID: 15753601
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Standard karyotype of Triticum searsii and its relationship with other S-genome species and common wheat.
    Friebe B; Tuleen NA; Gill BS
    Theor Appl Genet; 1995 Jul; 91(2):248-54. PubMed ID: 24169771
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Molecular characterization of vernalization loci VRN1 in wild and cultivated wheats.
    Golovnina KA; Kondratenko EY; Blinov AG; Goncharov NP
    BMC Plant Biol; 2010 Aug; 10():168. PubMed ID: 20699006
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Quantification of genetic relationships among A genomes of wheats.
    Brandolini A; Vaccino P; Boggini G; Ozkan H; Kilian B; Salamini F
    Genome; 2006 Apr; 49(4):297-305. PubMed ID: 16699549
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The genome-wide transcriptional consequences of the nullisomic-tetrasomic stocks for homoeologous group 7 in bread wheat.
    Zhang R; Geng S; Qin Z; Tang Z; Liu C; Liu D; Song G; Li Y; Zhang S; Li W; Gao J; Han X; Li G
    BMC Genomics; 2019 Jan; 20(1):29. PubMed ID: 30630423
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Microsatellite markers reveal chimeric origin of redesignated chromosome 4A of wheat from Triticum urartu and other species.
    Vasu K; Aghaee-Sarbarzel ; Dhaliwal HS
    Genome; 2001 Aug; 44(4):628-32. PubMed ID: 11550897
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Evidence for AEGILOPS SHARONENSIS Eig as the Donor of the B Genome of Wheat.
    Kushnir U; Halloran GM
    Genetics; 1981 Nov; 99(3-4):495-512. PubMed ID: 17249127
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Chromosomal location of genes controlling flavonoid production in hexaploid wheat.
    Neuman PR; Waines JG; Hilu KW; Barnhart D
    Genetics; 1983 Feb; 103(2):313-21. PubMed ID: 17246110
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Chromosomal locations of genes that control major RNA-degrading activities in common wheat (Triticum aestivum L.).
    Yen Y; Baenziger PS
    Theor Appl Genet; 1996 Sep; 93(4):645-8. PubMed ID: 24162360
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The origin of the B-genome of bread wheat (Triticum aestivum L.).
    Haider N
    Genetika; 2013 Mar; 49(3):303-14. PubMed ID: 23755530
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Control of lectins in Triticum aestivum and Aegilops umbellulata by homoeologous group 1 chromosomes.
    Stinissen HM; Peumans WJ; Law CN; Payne PI
    Theor Appl Genet; 1983 Nov; 67(1):53-8. PubMed ID: 24258480
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The homoeologous relationships of the arms of wheat chromosomes 2A and 2D to chromosome 2B and their effect on homoeologous pairing.
    Naranjo T
    Chromosome Res; 1994 Jul; 2(4):275-9. PubMed ID: 7921643
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Cytological analysis on the distribution and origin of the alien chromosome pair conferring blue aleurone color in several European common wheat (Triticum aestivum L.) strains.
    Zeller FJ; CermeƱo MC; Miller TE
    Theor Appl Genet; 1991 Apr; 81(4):551-8. PubMed ID: 24221323
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Electrophoretic analysis of the high-molecular-weight glutenin subunits of Triticum monococcum, T. urartu, and the A genome of bread wheat (T. aestivum).
    Waines JG; Payne PI
    Theor Appl Genet; 1987 May; 74(1):71-6. PubMed ID: 24241459
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Homoeologous copy-specific expression patterns of MADS-box genes for floral formation in allopolyploid wheat.
    Tanaka M; Tanaka H; Shitsukawa N; Kitagawa S; Takumi S; Murai K
    Genes Genet Syst; 2016; 90(4):217-29. PubMed ID: 26616759
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Mapping of adult plant stripe rust resistance genes in diploid A genome wheat species and their transfer to bread wheat.
    Chhuneja P; Kaur S; Garg T; Ghai M; Kaur S; Prashar M; Bains NS; Goel RK; Keller B; Dhaliwal HS; Singh K
    Theor Appl Genet; 2008 Feb; 116(3):313-24. PubMed ID: 17989954
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Genome differentiation in Aegilops. 1. Distribution of highly repetitive DNA sequences on chromosomes of diploid species.
    Badaeva ED; Friebe B; Gill BS
    Genome; 1996 Apr; 39(2):293-306. PubMed ID: 18469894
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Development of a D genome specific marker resource for diploid and hexaploid wheat.
    Wang Y; Drader T; Tiwari VK; Dong L; Kumar A; Huo N; Ghavami F; Iqbal MJ; Lazo GR; Leonard J; Gill BS; Kianian SF; Luo MC; Gu YQ
    BMC Genomics; 2015 Aug; 16(1):646. PubMed ID: 26315263
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Molecular evolution of Wcor15 gene enhanced our understanding of the origin of A, B and D genomes in Triticum aestivum.
    Liu F; Si H; Wang C; Sun G; Zhou E; Chen C; Ma C
    Sci Rep; 2016 Aug; 6():31706. PubMed ID: 27526862
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Dosage effects of chromosomes of homoeologous groups 1 and 6 upon bread-making quality in hexaploid wheat.
    Rogers WJ; Rickatson JM; Sayers EJ; Law CN
    Theor Appl Genet; 1990 Aug; 80(2):281-7. PubMed ID: 24220908
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.