These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
120 related articles for article (PubMed ID: 24221498)
1. The detection and characterization of bacteria-sized protists in "Protist-free" filtrates and their potential impact on experimental marine ecology. Cynar FJ; Estep KW; Sieburth JM Microb Ecol; 1985 Dec; 11(4):281-8. PubMed ID: 24221498 [TBL] [Abstract][Full Text] [Related]
2. Establishment of microbial eukaryotic enrichment cultures from a chemically stratified antarctic lake and assessment of carbon fixation potential. Dolhi JM; Ketchum N; Morgan-Kiss RM J Vis Exp; 2012 Apr; (62):. PubMed ID: 22546995 [TBL] [Abstract][Full Text] [Related]
3. Effects of Bacillus cereus Endospores on Free-Living Protist Growth. Santos SS; Hendriksen NB; Jakobsen HH; Winding A Microb Ecol; 2017 Apr; 73(3):699-709. PubMed ID: 27928597 [TBL] [Abstract][Full Text] [Related]
4. Ultrastructural and Single-Cell-Level Characterization Reveals Metabolic Versatility in a Microbial Eukaryote Community from an Ice-Covered Antarctic Lake. Li W; Podar M; Morgan-Kiss RM Appl Environ Microbiol; 2016 Jun; 82(12):3659-3670. PubMed ID: 27084010 [TBL] [Abstract][Full Text] [Related]
5. Different marine heterotrophic nanoflagellates affect differentially the composition of enriched bacterial communities. Vázquez-Domínguez E; Casamayor EO; Català P; Lebaron P Microb Ecol; 2005 Apr; 49(3):474-85. PubMed ID: 16003474 [TBL] [Abstract][Full Text] [Related]
6. Bacterivory rate estimates and fraction of active bacterivores in natural protist assemblages from aquatic systems. Gonzalez JM Appl Environ Microbiol; 1999 Apr; 65(4):1463-9. PubMed ID: 10103238 [TBL] [Abstract][Full Text] [Related]
7. Response of protist community dynamics and co-occurrence patterns to the construction of artificial reefs: A case study in Daya Bay, China. Zhu W; Qin C; Ma H; Xi S; Zuo T; Pan W; Li C Sci Total Environ; 2020 Nov; 742():140575. PubMed ID: 32623178 [TBL] [Abstract][Full Text] [Related]
8. Factors responsible for the differences in cultural estimates and direct microscopical counts of populations of bacterivorous nanoflagellates. Caron DA; Davis PG; Sieburth JM Microb Ecol; 1989 Sep; 18(2):89-104. PubMed ID: 24196125 [TBL] [Abstract][Full Text] [Related]
9. Viral Production in Seawater Filtered Through 0.2-μm Pore-Size Filters: A Hidden Biogeochemical Cycle in a Neglected Realm. Yang Y; Nagata T Front Microbiol; 2021; 12():774849. PubMed ID: 34867916 [TBL] [Abstract][Full Text] [Related]
10. Killing potential protist predators as a survival strategy of the newly described dinoflagellate Alexandrium pohangense. Kim JH; Jeong HJ; Lim AS; Rho JR; Lee SB Harmful Algae; 2016 May; 55():41-55. PubMed ID: 28073546 [TBL] [Abstract][Full Text] [Related]
11. [Effect or preliminary filtration on the functional characteristics of bacterioplankton from Lake Khanka]. Shchur LA; Aponasenko AD; Lopatin VN; Makarskaia GV; Pozhilenkova PV Mikrobiologiia; 2001; 70(3):405-11. PubMed ID: 11450465 [TBL] [Abstract][Full Text] [Related]
12. Filterable marine bacteria found in the deep sea: Distribution, taxonomy, and response to starvation. Tabor PS; Ohwada K; Colwell RR Microb Ecol; 1981 Mar; 7(1):67-83. PubMed ID: 24227320 [TBL] [Abstract][Full Text] [Related]
13. Use of nuclepore filters for counting bacteria by fluorescence microscopy. Hobbie JE; Daley RJ; Jasper S Appl Environ Microbiol; 1977 May; 33(5):1225-8. PubMed ID: 327932 [TBL] [Abstract][Full Text] [Related]
14. Application of rRNA-based probes for observing marine nanoplanktonic protists. Lim EL; Amaral LA; Caron DA; DeLong EF Appl Environ Microbiol; 1993 May; 59(5):1647-55. PubMed ID: 8517756 [TBL] [Abstract][Full Text] [Related]
15. Flow cytometric detection and quantification of heterotrophic nanoflagellates in enriched seawater and cultures. Guindulain Rifà T; Latatu A; Ayo B; Iriberri J; Comas-Riu J; Vives-Rego J Syst Appl Microbiol; 2002 Apr; 25(1):100-8. PubMed ID: 12086176 [TBL] [Abstract][Full Text] [Related]
16. Single-cell amplicon sequencing reveals community structures and transmission trends of protist-associated bacteria in a termite host. Stephens ME; Gage DJ PLoS One; 2020; 15(5):e0233065. PubMed ID: 32413056 [TBL] [Abstract][Full Text] [Related]
17. Viral Attachment to Biotic and Abiotic Surfaces in Seawater. Yamada Y; Guillemette R; Baudoux AC; Patel N; Azam F Appl Environ Microbiol; 2020 Jan; 86(3):. PubMed ID: 31704685 [TBL] [Abstract][Full Text] [Related]
18. Abundance of viruses in marine waters: assessment by epifluorescence and transmission electron microscopy. Hara S; Terauchi K; Koike I Appl Environ Microbiol; 1991 Sep; 57(9):2731-4. PubMed ID: 16348556 [TBL] [Abstract][Full Text] [Related]
19. Unveiling in situ interactions between marine protists and bacteria through single cell sequencing. Martinez-Garcia M; Brazel D; Poulton NJ; Swan BK; Gomez ML; Masland D; Sieracki ME; Stepanauskas R ISME J; 2012 Mar; 6(3):703-7. PubMed ID: 21938022 [TBL] [Abstract][Full Text] [Related]
20. Control of Waterborne Human Viruses by Indigenous Bacteria and Protists Is Influenced by Temperature, Virus Type, and Microbial Species. Olive M; Gan C; Carratalà A; Kohn T Appl Environ Microbiol; 2020 Jan; 86(3):. PubMed ID: 31732569 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]