BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 24221936)

  • 1. Proteinase inhibitors I and II in fruit of wild tomato species: Transient components of a mechanism for defense and seed dispersal.
    Pearce G; Ryan CA; Liljegren D
    Planta; 1988 Oct; 175(4):527-31. PubMed ID: 24221936
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Uniquely regulated proteinase inhibitor I gene in a wild tomato species : inhibitor I family gene is wound-inducible in leaves and developmentally regulated in fruit.
    Wingate VP; Ryan CA
    Plant Physiol; 1991 Oct; 97(2):496-501. PubMed ID: 16668426
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel fruit-expressed trypsin inhibitor I gene from a wild species of tomato.
    Wingate VP; Ryan CA
    J Biol Chem; 1991 Mar; 266(9):5814-8. PubMed ID: 2005119
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tissue and Cellular Localization of Proteinase Inhibitors I and II in the Fruit of the Wild Tomato, Lycopersicon peruvianum (L.) Mill.
    Wingate VP; Franceschi VR; Ryan CA
    Plant Physiol; 1991 Oct; 97(2):490-5. PubMed ID: 16668425
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enzymic Components of Sucrose Accumulation in the Wild Tomato Species Lycopersicon peruvianum.
    Stommel JR
    Plant Physiol; 1992 May; 99(1):324-8. PubMed ID: 16668869
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Isolation and characterization of a novel, developmentally regulated proteinase inhibitor I protein and cDNA from the fruit of a wild species of tomato.
    Wingate VP; Broadway RM; Ryan CA
    J Biol Chem; 1989 Oct; 264(30):17734-8. PubMed ID: 2808345
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The high fruit soluble sugar content in wild Lycopersicon species and their hybrids with cultivars depends on sucrose import during ripening rather than on sucrose metabolism.
    Balibrea ME; Martínez-Andújar C; Cuartero J; Bolarín MC; Pérez-Alfocea F
    Funct Plant Biol; 2006 Mar; 33(3):279-288. PubMed ID: 32689235
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ripening behavior of wild tomato species.
    Grumet R; Fobes JF; Herner RC
    Plant Physiol; 1981 Dec; 68(6):1428-32. PubMed ID: 16662121
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of gene expression by ethylene during Lycopersicon esculentum (tomato) fruit development.
    Lincoln JE; Cordes S; Read E; Fischer RL
    Proc Natl Acad Sci U S A; 1987 May; 84(9):2793-7. PubMed ID: 3472237
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of cDNA clones for tomato (Lycopersicon esculentum Mill.) mRNAs that accumulate during fruit ripening and leaf senescence in response to ethylene.
    Davies KM; Grierson D
    Planta; 1989 Aug; 179(1):73-80. PubMed ID: 24201424
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ethylene-regulated expression of a tomato fruit ripening gene encoding a proteinase inhibitor I with a glutamic residue at the reactive site.
    Margossian LJ; Federman AD; Giovannoni JJ; Fischer RL
    Proc Natl Acad Sci U S A; 1988 Nov; 85(21):8012-6. PubMed ID: 2903499
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The tomato polygalacturonase gene and ripening-specific expression in transgenic plants.
    Bird CR; Smith CJ; Ray JA; Moureau P; Bevan MW; Bird AS; Hughes S; Morris PC; Grierson D; Schuch W
    Plant Mol Biol; 1988 Sep; 11(5):651-62. PubMed ID: 24272499
    [TBL] [Abstract][Full Text] [Related]  

  • 13. fw 2.2:a major QTL controlling fruit weight is common to both red- and green-fruited tomato species.
    Alpert KB; Grandillo S; Tanksley SD
    Theor Appl Genet; 1995 Nov; 91(6-7):994-1000. PubMed ID: 24169988
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Relationship between tomato fruit growth and fruit osmotic potential under salinity.
    Bolarin MC; Estañ MT; Caro M; Romero-Aranda R; Cuartero J
    Plant Sci; 2001 May; 160(6):1153-1159. PubMed ID: 11337072
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cloning of tomato (Lycopersicon esculentum Mill.) arginine decarboxylase gene and its expression during fruit ripening.
    Rastogi R; Dulson J; Rothstein SJ
    Plant Physiol; 1993 Nov; 103(3):829-34. PubMed ID: 8022938
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Maintenance of Chloroplast Components during Chromoplast Differentiation in the Tomato Mutant Green Flesh.
    Cheung AY; McNellis T; Piekos B
    Plant Physiol; 1993 Apr; 101(4):1223-1229. PubMed ID: 12231777
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Search for Resistance in Lycopersicon spp. to Nacobbus aberrans.
    Veremis JC; Cap GB; Roberts PA
    Plant Dis; 1997 Feb; 81(2):217-221. PubMed ID: 30870900
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genes from Lycopersicon chmielewskii affecting tomato quality during fruit ripening.
    Azanza F; Kim D; Tanksley SD; Juvik JA
    Theor Appl Genet; 1995 Aug; 91(3):495-504. PubMed ID: 24169841
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Secondary metabolites in a neotropical shrub: spatiotemporal allocation and role in fruit defense and dispersal.
    Maynard LD; Slinn HL; Glassmire AE; Matarrita-Carranza B; Dodson CD; Nguyen TT; Burroughs MJ; Dyer LA; Jeffrey CS; Whitehead SR
    Ecology; 2020 Dec; 101(12):e03192. PubMed ID: 32892339
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Organization of Ripening and Ethylene Regulatory Regions in a Fruit-Specific Promoter from Tomato (Lycopersicon esculentum).
    Deikman J; Kline R; Fischer RL
    Plant Physiol; 1992 Dec; 100(4):2013-7. PubMed ID: 16653232
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.