These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 24222183)

  • 41. Visual search in barn owls: Task difficulty and saccadic behavior.
    Orlowski J; Ben-Shahar O; Wagner H
    J Vis; 2018 Jan; 18(1):4. PubMed ID: 29322165
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Perisaccadic parietal and occipital gamma power in light and in complete darkness.
    Forgacs PB; von Gizycki H; Selesnick I; Syed NA; Ebrahim K; Avitable M; Amassian V; Lytton W; Bodis-Wollner I
    Perception; 2008; 37(3):419-32. PubMed ID: 18491719
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Cortical activity preceding vertical saccades: a MEG study.
    Tzelepi A; Laskaris N; Amditis A; Kapoula Z
    Brain Res; 2010 Mar; 1321():105-16. PubMed ID: 20079341
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Saccades and microsaccades during visual fixation, exploration, and search: foundations for a common saccadic generator.
    Otero-Millan J; Troncoso XG; Macknik SL; Serrano-Pedraza I; Martinez-Conde S
    J Vis; 2008 Dec; 8(14):21.1-18. PubMed ID: 19146322
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Time course of cross-hemispheric spatial updating in the human parietal cortex.
    Bellebaum C; Daum I
    Behav Brain Res; 2006 Apr; 169(1):150-61. PubMed ID: 16442641
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Feedforward and recurrent processing in scene segmentation: electroencephalography and functional magnetic resonance imaging.
    Scholte HS; Jolij J; Fahrenfort JJ; Lamme VA
    J Cogn Neurosci; 2008 Nov; 20(11):2097-109. PubMed ID: 18416684
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Microsaccade-related brain potentials signal the focus of visuospatial attention.
    Meyberg S; Werkle-Bergner M; Sommer W; Dimigen O
    Neuroimage; 2015 Jan; 104():79-88. PubMed ID: 25285375
    [TBL] [Abstract][Full Text] [Related]  

  • 48. An effect of context on saccade-related behavior and brain activity.
    Dyckman KA; Camchong J; Clementz BA; McDowell JE
    Neuroimage; 2007 Jul; 36(3):774-84. PubMed ID: 17478104
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Relationship between saccadic eye movements and cortical activity as measured by fMRI: quantitative and qualitative aspects.
    Kimmig H; Greenlee MW; Gondan M; Schira M; Kassubek J; Mergner T
    Exp Brain Res; 2001 Nov; 141(2):184-94. PubMed ID: 11713630
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Neural correlates of inter- and intra-individual saccadic reaction time differences in the gap/overlap paradigm.
    Ozyurt J; Greenlee MW
    J Neurophysiol; 2011 May; 105(5):2438-47. PubMed ID: 21346217
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Effects of ethanol on anti-saccade task performance.
    Khan SA; Ford K; Timney B; Everling S
    Exp Brain Res; 2003 May; 150(1):68-74. PubMed ID: 12698218
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Primate frontal eye fields. III. Maintenance of a spatially accurate saccade signal.
    Goldberg ME; Bruce CJ
    J Neurophysiol; 1990 Aug; 64(2):489-508. PubMed ID: 2213128
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Saccadic reaction time in the monkey: advanced preparation of oculomotor programs is primarily responsible for express saccade occurrence.
    Paré M; Munoz DP
    J Neurophysiol; 1996 Dec; 76(6):3666-81. PubMed ID: 8985865
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Frontal eye field signals that may trigger the brainstem saccade generator.
    Keller EL; Lee BT; Lee KM
    Prog Brain Res; 2008; 171():107-14. PubMed ID: 18718288
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Visual and saccade-related activity in macaque posterior cingulate cortex.
    Dean HL; Crowley JC; Platt ML
    J Neurophysiol; 2004 Nov; 92(5):3056-68. PubMed ID: 15201314
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Fixational saccades alter the gap effect.
    Watanabe M; Matsuo Y; Zha L; MacAskill MR; Kobayashi Y
    Eur J Neurosci; 2014 Jun; 39(12):2098-106. PubMed ID: 24661494
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Saccade target selection in the superior colliculus during a visual search task.
    McPeek RM; Keller EL
    J Neurophysiol; 2002 Oct; 88(4):2019-34. PubMed ID: 12364525
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Shortening and prolongation of saccade latencies following microsaccades.
    Rolfs M; Laubrock J; Kliegl R
    Exp Brain Res; 2006 Mar; 169(3):369-76. PubMed ID: 16328308
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Primate frontal eye fields. I. Single neurons discharging before saccades.
    Bruce CJ; Goldberg ME
    J Neurophysiol; 1985 Mar; 53(3):603-35. PubMed ID: 3981231
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Visual encoding and fixation target selection in free viewing: presaccadic brain potentials.
    Nikolaev AR; Jurica P; Nakatani C; Plomp G; van Leeuwen C
    Front Syst Neurosci; 2013; 7():26. PubMed ID: 23818877
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.