These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
162 related articles for article (PubMed ID: 24222414)
1. Liquid chromatography tandem mass spectrometry for measuring ¹³C-labeling in intermediates of the glycolysis and pentose phosphate pathway. Cocuron JC; Alonso AP Methods Mol Biol; 2014; 1090():131-42. PubMed ID: 24222414 [TBL] [Abstract][Full Text] [Related]
2. Mathematical modeling of isotope labeling experiments for metabolic flux analysis. Nargund S; Sriram G Methods Mol Biol; 2014; 1083():109-31. PubMed ID: 24218213 [TBL] [Abstract][Full Text] [Related]
3. Metabolic flux analysis in Escherichia coli by integrating isotopic dynamic and isotopic stationary 13C labeling data. Schaub J; Mauch K; Reuss M Biotechnol Bioeng; 2008 Apr; 99(5):1170-85. PubMed ID: 17972325 [TBL] [Abstract][Full Text] [Related]
4. Application of 13C isotope labeling using liquid chromatography mass spectrometry (LC-MS) to determining phosphate-containing metabolic incorporation. Bhowmik SK; Putluri V; Kommagani R; Konde SA; Lydon JP; Sreekumar A; Putluri N J Mass Spectrom; 2013 Dec; 48(12):1270-5. PubMed ID: 24338880 [TBL] [Abstract][Full Text] [Related]
6. Collisional fragmentation of central carbon metabolites in LC-MS/MS increases precision of ¹³C metabolic flux analysis. Rühl M; Rupp B; Nöh K; Wiechert W; Sauer U; Zamboni N Biotechnol Bioeng; 2012 Mar; 109(3):763-71. PubMed ID: 22012626 [TBL] [Abstract][Full Text] [Related]
7. Optimization and validation of capillary electrophoresis- and gas chromatography-tandem mass spectrometry methods for the analysis of intermediate metabolites in glycolysis and pentose phosphate pathways within biological samples. Nam M; Kim MS; Hwang GS J Chromatogr A; 2021 Oct; 1656():462531. PubMed ID: 34520889 [TBL] [Abstract][Full Text] [Related]
8. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry for metabolic flux analyses using isotope-labeled ethanol. Hollemeyer K; Velagapudi VR; Wittmann C; Heinzle E Rapid Commun Mass Spectrom; 2007; 21(3):336-42. PubMed ID: 17206598 [TBL] [Abstract][Full Text] [Related]
9. Isotope labeling pattern study of central carbon metabolites using GC/MS. Jung JY; Oh MK J Chromatogr B Analyt Technol Biomed Life Sci; 2015 Jan; 974():101-8. PubMed ID: 25463204 [TBL] [Abstract][Full Text] [Related]
10. A comprehensive method for the quantification of the non-oxidative pentose phosphate pathway intermediates in Saccharomyces cerevisiae by GC-IDMS. Cipollina C; ten Pierick A; Canelas AB; Seifar RM; van Maris AJ; van Dam JC; Heijnen JJ J Chromatogr B Analyt Technol Biomed Life Sci; 2009 Oct; 877(27):3231-6. PubMed ID: 19647496 [TBL] [Abstract][Full Text] [Related]
11. Development of pseudo-targeted profiling of isotopic metabolomics using combined platform of high resolution mass spectrometry and triple quadrupole mass spectrometry with application of Wang X; Luo C; Xu L; Wang Y; Guo LJ; Jiao Y; Deng H; Liu X J Chromatogr A; 2023 May; 1696():463923. PubMed ID: 37023637 [TBL] [Abstract][Full Text] [Related]
12. Cross-platform comparison of methods for quantitative metabolomics of primary metabolism. Büscher JM; Czernik D; Ewald JC; Sauer U; Zamboni N Anal Chem; 2009 Mar; 81(6):2135-43. PubMed ID: 19236023 [TBL] [Abstract][Full Text] [Related]
13. Ultrahigh performance liquid chromatography-tandem mass spectrometry method for fast and robust quantification of anionic and aromatic metabolites. Buescher JM; Moco S; Sauer U; Zamboni N Anal Chem; 2010 Jun; 82(11):4403-12. PubMed ID: 20433152 [TBL] [Abstract][Full Text] [Related]
14. Metabolic-flux analysis of Saccharomyces cerevisiae CEN.PK113-7D based on mass isotopomer measurements of (13)C-labeled primary metabolites. van Winden WA; van Dam JC; Ras C; Kleijn RJ; Vinke JL; van Gulik WM; Heijnen JJ FEMS Yeast Res; 2005 Apr; 5(6-7):559-68. PubMed ID: 15780655 [TBL] [Abstract][Full Text] [Related]
15. (13)C metabolic flux analysis in neurons utilizing a model that accounts for hexose phosphate recycling within the pentose phosphate pathway. Gebril HM; Avula B; Wang YH; Khan IA; Jekabsons MB Neurochem Int; 2016 Feb; 93():26-39. PubMed ID: 26723542 [TBL] [Abstract][Full Text] [Related]
16. Metabolic flux and metabolic network analysis of Penicillium chrysogenum using 2D [13C, 1H] COSY NMR measurements and cumulative bondomer simulation. van Winden WA; van Gulik WM; Schipper D; Verheijen PJ; Krabben P; Vinke JL; Heijnen JJ Biotechnol Bioeng; 2003 Jul; 83(1):75-92. PubMed ID: 12740935 [TBL] [Abstract][Full Text] [Related]
17. Liquid chromatography/tandem mass spectrometry of glycolytic intermediates: deconvolution of coeluting structural isomers based on unique product ion ratios. Ross KL; Dalluge JJ Anal Chem; 2009 May; 81(10):4021-6. PubMed ID: 19354282 [TBL] [Abstract][Full Text] [Related]