BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 24222470)

  • 1. Indigenously produced polyhydroxyalkanoate based co-polymer as cellular supportive biomaterial.
    Shabna A; Saranya V; Malathi J; Shenbagarathai R; Madhavan HN
    J Biomed Mater Res A; 2014 Oct; 102(10):3470-6. PubMed ID: 24222470
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Binary polyhydroxyalkanoate systems for soft tissue engineering.
    Lukasiewicz B; Basnett P; Nigmatullin R; Matharu R; Knowles JC; Roy I
    Acta Biomater; 2018 Apr; 71():225-234. PubMed ID: 29501818
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The improvement of fibroblast growth on hydrophobic biopolyesters by coating with polyhydroxyalkanoate granule binding protein PhaP fused with cell adhesion motif RGD.
    Dong Y; Li P; Chen CB; Wang ZH; Ma P; Chen GQ
    Biomaterials; 2010 Dec; 31(34):8921-30. PubMed ID: 20728212
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biocompatibility of polyhydroxyalkanoate as a potential material for ligament and tendon scaffold material.
    Rathbone S; Furrer P; Lübben J; Zinn M; Cartmell S
    J Biomed Mater Res A; 2010 Jun; 93(4):1391-403. PubMed ID: 19911384
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The behaviour of neural stem cells on polyhydroxyalkanoate nanofiber scaffolds.
    Xu XY; Li XT; Peng SW; Xiao JF; Liu C; Fang G; Chen KC; Chen GQ
    Biomaterials; 2010 May; 31(14):3967-75. PubMed ID: 20153524
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Acellular cardiac extracellular matrix as a scaffold for tissue engineering: in vitro cell support, remodeling, and biocompatibility.
    Eitan Y; Sarig U; Dahan N; Machluf M
    Tissue Eng Part C Methods; 2010 Aug; 16(4):671-83. PubMed ID: 19780649
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vitro effect of oligo-hydroxyalkanoates on the growth of mouse fibroblast cell line L929.
    Sun J; Dai Z; Zhao Y; Chen GQ
    Biomaterials; 2007 Sep; 28(27):3896-903. PubMed ID: 17574664
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biocompatibility of soft-templated mesoporous carbons.
    Gencoglu MF; Spurri A; Franko M; Chen J; Hensley DK; Heldt CL; Saha D
    ACS Appl Mater Interfaces; 2014 Sep; 6(17):15068-77. PubMed ID: 25144129
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Leucocytes show improvement growth on PHA polymer surface.
    Hassan MA; Amara AA; Abuelhamd AT; Haroun BM
    Pak J Pharm Sci; 2010 Jul; 23(3):332-6. PubMed ID: 20566449
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effective enhancement of short-chain-length-medium-chain-length polyhydroxyalkanoate copolymer production by coexpression of genetically engineered 3-ketoacyl-acyl-carrier-protein synthase III (fabH) and polyhydroxyalkanoate synthesis genes.
    Nomura CT; Tanaka T; Gan Z; Kuwabara K; Abe H; Takase K; Taguchi K; Doi Y
    Biomacromolecules; 2004; 5(4):1457-64. PubMed ID: 15244465
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pseudomonas umsongensis GO16 as a platform for the in vivo synthesis of short and medium chain length polyhydroxyalkanoate blends.
    Cerrone F; Zhou B; Mouren A; Avérous L; Conroy S; Simpson JC; O'Connor KE; Narancic T
    Bioresour Technol; 2023 Nov; 387():129668. PubMed ID: 37572888
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The cytocompatability of polyhydroxyalkanoates coated with a fusion protein of PHA repressor protein (PhaR) and Lys-Gln-Ala-Gly-Asp-Val (KQAGDV) polypeptide.
    Dong CL; Li SY; Wang Y; Dong Y; Tang JZ; Chen JC; Chen GQ
    Biomaterials; 2012 Mar; 33(9):2593-9. PubMed ID: 22206593
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biosynthesis of polyhydroxyalkanoates co-polymer in E. coli using genes from Pseudomonas and Bacillus.
    Davis R; Anilkumar PK; Chandrashekar A; Shamala TR
    Antonie Van Leeuwenhoek; 2008 Aug; 94(2):207-16. PubMed ID: 18357511
    [TBL] [Abstract][Full Text] [Related]  

  • 14. PHA-rubber blends: synthesis, characterization and biodegradation.
    Bhatt R; Shah D; Patel KC; Trivedi U
    Bioresour Technol; 2008 Jul; 99(11):4615-20. PubMed ID: 17764931
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Three-dimensional polycaprolactone scaffold via needleless electrospinning promotes cell proliferation and infiltration.
    Li D; Wu T; He N; Wang J; Chen W; He L; Huang C; Ei-Hamshary HA; Al-Deyab SS; Ke Q; Mo X
    Colloids Surf B Biointerfaces; 2014 Sep; 121():432-43. PubMed ID: 24996758
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Emerging bone tissue engineering via Polyhydroxyalkanoate (PHA)-based scaffolds.
    Lim J; You M; Li J; Li Z
    Mater Sci Eng C Mater Biol Appl; 2017 Oct; 79():917-929. PubMed ID: 28629097
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In Vivo Tracking and
    Constantinides C; Basnett P; Lukasiewicz B; Carnicer R; Swider E; Majid QA; Srinivas M; Carr CA; Roy I
    ACS Appl Mater Interfaces; 2018 Aug; 10(30):25056-25068. PubMed ID: 29965724
    [TBL] [Abstract][Full Text] [Related]  

  • 18. BSA and fibrinogen adsorption on chitosan/κ-carrageenan polyelectrolyte complexes.
    Carneiro TN; Novaes DS; Rabelo RB; Celebi B; Chevallier P; Mantovani D; Beppu MM; Vieira RS
    Macromol Biosci; 2013 Aug; 13(8):1072-83. PubMed ID: 23765589
    [TBL] [Abstract][Full Text] [Related]  

  • 19. BioPEGylation of polyhydroxyalkanoates: influence on properties and satellite-stem cell cycle.
    Marçal H; Wanandy NS; Sanguanchaipaiwong V; Woolnough CE; Lauto A; Mahler SM; Foster LJ
    Biomacromolecules; 2008 Oct; 9(10):2719-26. PubMed ID: 18754686
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cytocompatibility of a silk fibroin tubular scaffold.
    Wang J; Wei Y; Yi H; Liu Z; Sun D; Zhao H
    Mater Sci Eng C Mater Biol Appl; 2014 Jan; 34():429-36. PubMed ID: 24268279
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.