These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 24222688)

  • 1. Transcription-factor binding and sliding on DNA studied using micro- and macroscopic models.
    Marklund EG; Mahmutovic A; Berg OG; Hammar P; van der Spoel D; Fange D; Elf J
    Proc Natl Acad Sci U S A; 2013 Dec; 110(49):19796-801. PubMed ID: 24222688
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Insights into the sliding movement of the lac repressor nonspecifically bound to DNA.
    Furini S; Domene C; Cavalcanti S
    J Phys Chem B; 2010 Feb; 114(6):2238-45. PubMed ID: 20095570
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sliding of a single lac repressor protein along DNA is tuned by DNA sequence and molecular switching.
    Tempestini A; Monico C; Gardini L; Vanzi F; Pavone FS; Capitanio M
    Nucleic Acids Res; 2018 Jun; 46(10):5001-5011. PubMed ID: 29584872
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The lac repressor displays facilitated diffusion in living cells.
    Hammar P; Leroy P; Mahmutovic A; Marklund EG; Berg OG; Elf J
    Science; 2012 Jun; 336(6088):1595-8. PubMed ID: 22723426
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DNA surface exploration and operator bypassing during target search.
    Marklund E; van Oosten B; Mao G; Amselem E; Kipper K; Sabantsev A; Emmerich A; Globisch D; Zheng X; Lehmann LC; Berg OG; Johansson M; Elf J; Deindl S
    Nature; 2020 Jul; 583(7818):858-861. PubMed ID: 32581356
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DNA recognition process of the lactose repressor protein studied via metadynamics and umbrella sampling simulations.
    Furini S; Domene C
    J Phys Chem B; 2014 Nov; 118(46):13059-65. PubMed ID: 25341013
    [TBL] [Abstract][Full Text] [Related]  

  • 7. What matters for lac repressor search in vivo--sliding, hopping, intersegment transfer, crowding on DNA or recognition?
    Mahmutovic A; Berg OG; Elf J
    Nucleic Acids Res; 2015 Apr; 43(7):3454-64. PubMed ID: 25779051
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sliding and target location of DNA-binding proteins: an NMR view of the lac repressor system.
    Loth K; Gnida M; Romanuka J; Kaptein R; Boelens R
    J Biomol NMR; 2013 May; 56(1):41-9. PubMed ID: 23568265
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Method for the analysis of contribution of sliding and hopping to a facilitated diffusion of DNA-binding protein: Application to in vivo data.
    Tabaka M; Burdzy K; Hołyst R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Aug; 92(2):022721. PubMed ID: 26382446
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Hinge Region Strengthens the Nonspecific Interaction between Lac-Repressor and DNA: A Computer Simulation Study.
    Sun L; Tabaka M; Hou S; Li L; Burdzy K; Aksimentiev A; Maffeo C; Zhang X; Holyst R
    PLoS One; 2016; 11(3):e0152002. PubMed ID: 27008630
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Asymmetric DNA-search dynamics by symmetric dimeric proteins.
    Khazanov N; Marcovitz A; Levy Y
    Biochemistry; 2013 Aug; 52(32):5335-44. PubMed ID: 23866074
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Facilitated diffusion framework for transcription factor search with conformational changes.
    Cartailler J; Reingruber J
    Phys Biol; 2015 Jul; 12(4):046012. PubMed ID: 26200216
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Probing transcription factor dynamics at the single-molecule level in a living cell.
    Elf J; Li GW; Xie XS
    Science; 2007 May; 316(5828):1191-4. PubMed ID: 17525339
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Diffusion-driven mechanisms of protein translocation on nucleic acids. 3. The Escherichia coli lac repressor--operator interaction: kinetic measurements and conclusions.
    Winter RB; Berg OG; von Hippel PH
    Biochemistry; 1981 Nov; 20(24):6961-77. PubMed ID: 7032584
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Theoretical and computational modeling of target-site search kinetics in vitro and in vivo.
    Koslover EF; Díaz de la Rosa MA; Spakowitz AJ
    Biophys J; 2011 Aug; 101(4):856-65. PubMed ID: 21843476
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lower bound on the precision of transcriptional regulation and why facilitated diffusion can reduce noise in gene expression.
    Paijmans J; ten Wolde PR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Sep; 90(3):032708. PubMed ID: 25314474
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Direct measurement of transcription factor dissociation excludes a simple operator occupancy model for gene regulation.
    Hammar P; Walldén M; Fange D; Persson F; Baltekin O; Ullman G; Leroy P; Elf J
    Nat Genet; 2014 Apr; 46(4):405-8. PubMed ID: 24562187
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular crowding effect on dynamics of DNA-binding proteins search for their targets.
    Liu L; Luo K
    J Chem Phys; 2014 Dec; 141(22):225102. PubMed ID: 25494769
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sliding of proteins non-specifically bound to DNA: Brownian dynamics studies with coarse-grained protein and DNA models.
    Ando T; Skolnick J
    PLoS Comput Biol; 2014 Dec; 10(12):e1003990. PubMed ID: 25504215
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Diffusion-driven mechanisms of protein translocation on nucleic acids. 1. Models and theory.
    Berg OG; Winter RB; von Hippel PH
    Biochemistry; 1981 Nov; 20(24):6929-48. PubMed ID: 7317363
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.