BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 24222912)

  • 1. Reducing the complexity of complex gene coexpression networks by coupling multiweighted labeling with topological analysis.
    Benso A; Cornale P; Di Carlo S; Politano G; Savino A
    Biomed Res Int; 2013; 2013():676328. PubMed ID: 24222912
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MICRAT: a novel algorithm for inferring gene regulatory networks using time series gene expression data.
    Yang B; Xu Y; Maxwell A; Koh W; Gong P; Zhang C
    BMC Syst Biol; 2018 Dec; 12(Suppl 7):115. PubMed ID: 30547796
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Incorporating topological information for predicting robust cancer subnetwork markers in human protein-protein interaction network.
    Khunlertgit N; Yoon BJ
    BMC Bioinformatics; 2016 Oct; 17(Suppl 13):351. PubMed ID: 27766944
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A data-driven interactome of synergistic genes improves network-based cancer outcome prediction.
    Allahyar A; Ubels J; de Ridder J
    PLoS Comput Biol; 2019 Feb; 15(2):e1006657. PubMed ID: 30726216
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Network topology measures for identifying disease-gene association in breast cancer.
    Ramadan E; Alinsaif S; Hassan MR
    BMC Bioinformatics; 2016 Jul; 17 Suppl 7(Suppl 7):274. PubMed ID: 27454166
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Subtype prediction in pediatric acute myeloid leukemia: classification using differential network rank conservation revisited.
    Obulkasim A; Fornerod M; Zwaan MC; Reinhardt D; van den Heuvel-Eibrink MM
    BMC Bioinformatics; 2015 Sep; 16():305. PubMed ID: 26399969
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Joint network and node selection for pathway-based genomic data analysis.
    Zhe S; Naqvi SA; Yang Y; Qi Y
    Bioinformatics; 2013 Aug; 29(16):1987-96. PubMed ID: 23749986
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Application of a co‑expression network for the analysis of aggressive and non‑aggressive breast cancer cell lines to predict the clinical outcome of patients.
    Guo L; Zhang K; Bing Z
    Mol Med Rep; 2017 Dec; 16(6):7967-7978. PubMed ID: 28944917
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of hub subnetwork based on topological features of genes in breast cancer.
    Zhuang DY; Jiang L; He QQ; Zhou P; Yue T
    Int J Mol Med; 2015 Mar; 35(3):664-74. PubMed ID: 25573623
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two-layer modular analysis of gene and protein networks in breast cancer.
    Srivastava A; Kumar S; Ramaswamy R
    BMC Syst Biol; 2014 Jul; 8():81. PubMed ID: 24997799
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A sub-space greedy search method for efficient Bayesian Network inference.
    Zhang Q; Cao Y; Li Y; Zhu Y; Sun SS; Guo D
    Comput Biol Med; 2011 Sep; 41(9):763-70. PubMed ID: 21741635
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Weighted Gene Coexpression Network Analysis Identifies Cysteine-Rich Intestinal Protein 1 (CRIP1) as a Prognostic Gene Associated with Relapse in Patients with Acute Myeloid Leukemia.
    Ye C; Ma S; Xia B; Zheng C
    Med Sci Monit; 2019 Oct; 25():7396-7406. PubMed ID: 31577790
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficient proximal gradient algorithm for inference of differential gene networks.
    Wang C; Gao F; Giannakis GB; D'Urso G; Cai X
    BMC Bioinformatics; 2019 May; 20(1):224. PubMed ID: 31046666
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Robustness and accuracy of functional modules in integrated network analysis.
    Beisser D; Brunkhorst S; Dandekar T; Klau GW; Dittrich MT; Müller T
    Bioinformatics; 2012 Jul; 28(14):1887-94. PubMed ID: 22581175
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identifying Network Perturbation in Cancer.
    Grechkin M; Logsdon BA; Gentles AJ; Lee SI
    PLoS Comput Biol; 2016 May; 12(5):e1004888. PubMed ID: 27145341
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differential dependency network analysis to identify condition-specific topological changes in biological networks.
    Zhang B; Li H; Riggins RB; Zhan M; Xuan J; Zhang Z; Hoffman EP; Clarke R; Wang Y
    Bioinformatics; 2009 Feb; 25(4):526-32. PubMed ID: 19112081
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A co-expression modules based gene selection for cancer recognition.
    Lu X; Deng Y; Huang L; Feng B; Liao B
    J Theor Biol; 2014 Dec; 362():75-82. PubMed ID: 24440175
    [TBL] [Abstract][Full Text] [Related]  

  • 18. KBoost: a new method to infer gene regulatory networks from gene expression data.
    Iglesias-Martinez LF; De Kegel B; Kolch W
    Sci Rep; 2021 Jul; 11(1):15461. PubMed ID: 34326402
    [TBL] [Abstract][Full Text] [Related]  

  • 19. TimeDelay-ARACNE: Reverse engineering of gene networks from time-course data by an information theoretic approach.
    Zoppoli P; Morganella S; Ceccarelli M
    BMC Bioinformatics; 2010 Mar; 11():154. PubMed ID: 20338053
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluating methods of inferring gene regulatory networks highlights their lack of performance for single cell gene expression data.
    Chen S; Mar JC
    BMC Bioinformatics; 2018 Jun; 19(1):232. PubMed ID: 29914350
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.