BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 24222912)

  • 21. A Multiattribute Gaussian Graphical Model for Inferring Multiscale Regulatory Networks: An Application in Breast Cancer.
    Chiquet J; Rigaill G; Sundqvist M
    Methods Mol Biol; 2019; 1883():143-160. PubMed ID: 30547399
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Network legos: building blocks of cellular wiring diagrams.
    Murali TM; Rivera CG
    J Comput Biol; 2008 Sep; 15(7):829-44. PubMed ID: 18707557
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Iterative class discovery and feature selection using Minimal Spanning Trees.
    Varma S; Simon R
    BMC Bioinformatics; 2004 Sep; 5():126. PubMed ID: 15355552
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The Performance Comparison of Gene Co-expression Networks of Breast and Prostate Cancer using Different Selection Criteria.
    Cingiz MÖ; Biricik G; Diri B
    Interdiscip Sci; 2021 Sep; 13(3):500-510. PubMed ID: 34003445
    [TBL] [Abstract][Full Text] [Related]  

  • 25. An extracellular matrix signature in leukemia precursor cells and acute myeloid leukemia.
    Izzi V; Lakkala J; Devarajan R; Ruotsalainen H; Savolainen ER; Koistinen P; Heljasvaara R; Pihlajaniemi T
    Haematologica; 2017 Jul; 102(7):e245-e248. PubMed ID: 28411251
    [No Abstract]   [Full Text] [Related]  

  • 26. Differential Coexpression Network Analysis for Gene Expression Data.
    Liu BH
    Methods Mol Biol; 2018; 1754():155-165. PubMed ID: 29536442
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A scalable method for molecular network reconstruction identifies properties of targets and mutations in acute myeloid leukemia.
    Ong E; Szedlak A; Kang Y; Smith P; Smith N; McBride M; Finlay D; Vuori K; Mason J; Ball ED; Piermarocchi C; Paternostro G
    J Comput Biol; 2015 Apr; 22(4):266-88. PubMed ID: 25844667
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Deducing corticotropin-releasing hormone receptor type 1 signaling networks from gene expression data by usage of genetic algorithms and graphical Gaussian models.
    Trümbach D; Graf C; Pütz B; Kühne C; Panhuysen M; Weber P; Holsboer F; Wurst W; Welzl G; Deussing JM
    BMC Syst Biol; 2010 Nov; 4():159. PubMed ID: 21092110
    [TBL] [Abstract][Full Text] [Related]  

  • 29. LGALS3 is connected to CD74 in a previously unknown protein network that is associated with poor survival in patients with AML.
    Ruvolo PP; Hu CW; Qiu Y; Ruvolo VR; Go RL; Hubner SE; Coombes KR; Andreeff M; Qutub AA; Kornblau SM
    EBioMedicine; 2019 Jun; 44():126-137. PubMed ID: 31105032
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Automated Identification of Core Regulatory Genes in Human Gene Regulatory Networks.
    Narang V; Ramli MA; Singhal A; Kumar P; de Libero G; Poidinger M; Monterola C
    PLoS Comput Biol; 2015; 11(9):e1004504. PubMed ID: 26393364
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Incorporating prior biological knowledge for network-based differential gene expression analysis using differentially weighted graphical LASSO.
    Zuo Y; Cui Y; Yu G; Li R; Ressom HW
    BMC Bioinformatics; 2017 Feb; 18(1):99. PubMed ID: 28187708
    [TBL] [Abstract][Full Text] [Related]  

  • 32. KatzDriver: A network based method to cancer causal genes discovery in gene regulatory network.
    Akhavan-Safar M; Teimourpour B
    Biosystems; 2021 Mar; 201():104326. PubMed ID: 33309969
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Reconstruction of transcriptional regulatory networks by stability-based network component analysis.
    Chen X; Xuan J; Wang C; Shajahan AN; Riggins RB; Clarke R
    IEEE/ACM Trans Comput Biol Bioinform; 2013; 10(6):1347-58. PubMed ID: 24407294
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Context-specific gene regulatory networks subdivide intrinsic subtypes of breast cancer.
    Nasser S; Cunliffe HE; Black MA; Kim S
    BMC Bioinformatics; 2011 Mar; 12 Suppl 2(Suppl 2):S3. PubMed ID: 21489222
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Integrating Bayesian variable selection with Modular Response Analysis to infer biochemical network topology.
    Santra T; Kolch W; Kholodenko BN
    BMC Syst Biol; 2013 Jul; 7():57. PubMed ID: 23829771
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Integrated network analysis and machine learning approach for the identification of key genes of triple-negative breast cancer.
    Naorem LD; Muthaiyan M; Venkatesan A
    J Cell Biochem; 2019 Apr; 120(4):6154-6167. PubMed ID: 30302816
    [TBL] [Abstract][Full Text] [Related]  

  • 37. IRIS: a method for reverse engineering of regulatory relations in gene networks.
    Morganella S; Zoppoli P; Ceccarelli M
    BMC Bioinformatics; 2009 Dec; 10():444. PubMed ID: 20030818
    [TBL] [Abstract][Full Text] [Related]  

  • 38. NETBAGs: a network-based clustering approach with gene signatures for cancer subtyping analysis.
    Wu L; Liu Z; Xu J; Chen M; Fang H; Tong W; Xiao W
    Biomark Med; 2015; 9(11):1053-65. PubMed ID: 26501477
    [TBL] [Abstract][Full Text] [Related]  

  • 39. DNA microarray data and contextual analysis of correlation graphs.
    Rougemont J; Hingamp P
    BMC Bioinformatics; 2003 Apr; 4():15. PubMed ID: 12720549
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Enriching regulatory networks by bootstrap learning using optimised GO-based gene similarity and gene links mined from PubMed abstracts.
    Taylor RC; Sanfilippo A; McDermott JE; Baddeley B; Riensche R; Jensen R; Verhagen M; Pustejovsky J
    Int J Comput Biol Drug Des; 2011; 4(1):56-82. PubMed ID: 21330694
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.