These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Toxicity and Antioxidant Activity of Fullerenol C Kovel ES; Kicheeva AG; Vnukova NG; Churilov GN; Stepin EA; Kudryasheva NS Int J Mol Sci; 2021 Jun; 22(12):. PubMed ID: 34203700 [TBL] [Abstract][Full Text] [Related]
5. Reactive Oxygen Species and the Aging Eye: Specific Role of Metabolically Active Mitochondria in Maintaining Lens Function and in the Initiation of the Oxidation-Induced Maturity Onset Cataract--A Novel Platform of Mitochondria-Targeted Antioxidants With Broad Therapeutic Potential for Redox Regulation and Detoxification of Oxidants in Eye Diseases. Babizhayev MA; Yegorov YE Am J Ther; 2016; 23(1):e98-117. PubMed ID: 21048433 [TBL] [Abstract][Full Text] [Related]
6. Mechanism of ROS scavenging and antioxidant signalling by redox metallic and fullerene nanomaterials: Potential implications in ROS associated degenerative disorders. Akhtar MJ; Ahamed M; Alhadlaq HA; Alshamsan A Biochim Biophys Acta Gen Subj; 2017 Apr; 1861(4):802-813. PubMed ID: 28115205 [TBL] [Abstract][Full Text] [Related]
7. Mitochondria in homeostasis of reactive oxygen species in cell, tissues, and organism. Jezek P; Hlavatá L Int J Biochem Cell Biol; 2005 Dec; 37(12):2478-503. PubMed ID: 16103002 [TBL] [Abstract][Full Text] [Related]
8. Melatonin-mitochondria interplay in health and disease. Acuña Castroviejo D; López LC; Escames G; López A; García JA; Reiter RJ Curr Top Med Chem; 2011; 11(2):221-40. PubMed ID: 21244359 [TBL] [Abstract][Full Text] [Related]
9. Comparison of the Effect of Native 1,4-Naphthoquinones Plumbagin, Menadione, and Lawsone on Viability, Redox Status, and Mitochondrial Functions of C6 Glioblastoma Cells. Majiene D; Kuseliauskyte J; Stimbirys A; Jekabsone A Nutrients; 2019 Jun; 11(6):. PubMed ID: 31181639 [TBL] [Abstract][Full Text] [Related]
10. Antioxidant activity by a synergy of redox-sensitive mitochondrial phospholipase A2 and uncoupling protein-2 in lung and spleen. Jabůrek M; Ježek J; Zelenka J; Ježek P Int J Biochem Cell Biol; 2013 Apr; 45(4):816-25. PubMed ID: 23354121 [TBL] [Abstract][Full Text] [Related]
11. [Role of mitochondria in reactive oxygen species generation and removal; relevance to signaling and programmed cell death]. Czarna M; Jarmuszkiewicz W Postepy Biochem; 2006; 52(2):145-56. PubMed ID: 17078504 [TBL] [Abstract][Full Text] [Related]
14. Respiratory uncoupling by increased H(+) or K(+) flux is beneficial for heart mitochondrial turnover of reactive oxygen species but not for permeability transition. Morota S; Piel S; Hansson MJ BMC Cell Biol; 2013 Sep; 14():40. PubMed ID: 24053891 [TBL] [Abstract][Full Text] [Related]
15. Oxidative stress and mitochondrial dysfunction in atherosclerosis: mitochondria-targeted antioxidants as potential therapy. Victor VM; Apostolova N; Herance R; Hernandez-Mijares A; Rocha M Curr Med Chem; 2009; 16(35):4654-67. PubMed ID: 19903143 [TBL] [Abstract][Full Text] [Related]
16. Mitochondrial function and redox control in the aging eye: role of MsrA and other repair systems in cataract and macular degenerations. Brennan LA; Kantorow M Exp Eye Res; 2009 Feb; 88(2):195-203. PubMed ID: 18588875 [TBL] [Abstract][Full Text] [Related]
17. Effects of isoflurane on complex II‑associated mitochondrial respiration and reactive oxygen species production: Roles of nitric oxide and mitochondrial KATP channels. Wang J; Sun J; Qiao S; Li H; Che T; Wang C; An J Mol Med Rep; 2019 Nov; 20(5):4383-4390. PubMed ID: 31545457 [TBL] [Abstract][Full Text] [Related]
18. Use the Protonmotive Force: Mitochondrial Uncoupling and Reactive Oxygen Species. Berry BJ; Trewin AJ; Amitrano AM; Kim M; Wojtovich AP J Mol Biol; 2018 Oct; 430(21):3873-3891. PubMed ID: 29626541 [TBL] [Abstract][Full Text] [Related]