These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 24223030)
21. Assessing arsenic leachability from pulverized cement concrete produced from arsenic-laden solid CalSiCo-sludge. Bhunia P; Pal A; Bandyopadhyay M J Hazard Mater; 2007 Mar; 141(3):826-33. PubMed ID: 16938388 [TBL] [Abstract][Full Text] [Related]
22. Arsenic K-edge X-ray absorption spectroscopy of arsenic in seafood. George GN; Prince RC; Singh SP; Pickering IJ Mol Nutr Food Res; 2009 May; 53(5):552-7. PubMed ID: 19072885 [TBL] [Abstract][Full Text] [Related]
23. Impact of the use of waste on trace element concentrations in cement and concrete. Achternbosch M; Bräutigam KR; Hartlieb N; Kupsch C; Richers U; Stemmermann P Waste Manag Res; 2005 Aug; 23(4):328-37. PubMed ID: 16200983 [TBL] [Abstract][Full Text] [Related]
24. Assessment of Pb-slag, MSWI bottom ash and boiler and fly ash for using as a fine aggregate in cement mortar. Saikia N; Cornelis G; Mertens G; Elsen J; Van Balen K; Van Gerven T; Vandecasteele C J Hazard Mater; 2008 Jun; 154(1-3):766-77. PubMed ID: 18068299 [TBL] [Abstract][Full Text] [Related]
25. Arsenic encapsulation using Portland cement with ferrous sulfate/lime and Terra-Bond™ technologies - Microcharacterization and leaching studies. Randall PM Sci Total Environ; 2012 Mar; 420():300-12. PubMed ID: 22335881 [TBL] [Abstract][Full Text] [Related]
26. Analyses of heavy metals in mineral trioxide aggregate and Portland cement. Schembri M; Peplow G; Camilleri J J Endod; 2010 Jul; 36(7):1210-5. PubMed ID: 20630301 [TBL] [Abstract][Full Text] [Related]
27. Study on the evolution and transformation of chlorine during co-processing of hazardous waste incineration residue in a cement kiln. Zhu H; Wang Y; Jing N; Jiang X; Lv G; Yan J Waste Manag Res; 2019 May; 37(5):495-501. PubMed ID: 30795720 [TBL] [Abstract][Full Text] [Related]
28. Assessment of waste oyster shells and coal mine drainage sludge for the stabilization of As-, Pb-, and Cu-contaminated soil. Moon DH; Cheong KH; Koutsospyros A; Chang YY; Hyun S; Ok YS; Park JH Environ Sci Pollut Res Int; 2016 Feb; 23(3):2362-70. PubMed ID: 26411449 [TBL] [Abstract][Full Text] [Related]
29. Uptake of Np(IV) by C-S-H phases and cement paste: an EXAFS study. Gaona X; Dähn R; Tits J; Scheinost AC; Wieland E Environ Sci Technol; 2011 Oct; 45(20):8765-71. PubMed ID: 21879756 [TBL] [Abstract][Full Text] [Related]
30. Utilization of flotation wastes of copper slag as raw material in cement production. Alp I; Deveci H; Süngün H J Hazard Mater; 2008 Nov; 159(2-3):390-5. PubMed ID: 18384950 [TBL] [Abstract][Full Text] [Related]
31. Arsenic immobilization as alunite-type phases: the arsenate substitution in alunite and hydronium alunite. Sunyer A; Currubí M; Viñals J J Hazard Mater; 2013 Oct; 261():559-69. PubMed ID: 23994654 [TBL] [Abstract][Full Text] [Related]
32. New Types and Dosages for the Manufacture of Low-Energy Cements from Raw Materials and Industrial Waste under the Principles of the Circular Economy and Low-Carbon Economy. Martínez-Martínez S; Pérez-Villarejo L; Eliche-Quesada D; Sánchez-Soto PJ Materials (Basel); 2023 Jan; 16(2):. PubMed ID: 36676541 [TBL] [Abstract][Full Text] [Related]
33. Microscale investigations of Ni uptake by cement using a combination of scanning electron microscopy and synchrotron-based techniques. Vespa M; Dähn R; Gallucci E; Grolimund D; Wieland E; Scheidegger AM Environ Sci Technol; 2006 Dec; 40(24):7702-9. PubMed ID: 17256516 [TBL] [Abstract][Full Text] [Related]
34. Utilization of Several Industrial Wastes as Raw Material for Calcium Sulfoaluminate Cement. Julphunthong P; Joyklad P Materials (Basel); 2019 Oct; 12(20):. PubMed ID: 31614714 [TBL] [Abstract][Full Text] [Related]
35. Secondary arsenic minerals in the environment: a review. Drahota P; Filippi M Environ Int; 2009 Nov; 35(8):1243-55. PubMed ID: 19665230 [TBL] [Abstract][Full Text] [Related]
36. Effect of kiln dust from a cement factory on growth of Vicia faba L. Uysal I; Ozdilek HG; Oztürk M J Environ Biol; 2012 Apr; 33(2 Suppl):525-30. PubMed ID: 23424859 [TBL] [Abstract][Full Text] [Related]
37. Potential use of pyrite cinders as raw material in cement production: results of industrial scale trial operations. Alp I; Deveci H; Yazici EY; Türk T; Süngün YH J Hazard Mater; 2009 Jul; 166(1):144-9. PubMed ID: 19100685 [TBL] [Abstract][Full Text] [Related]
38. Co speciation in hardened cement paste: a macro- and micro-spectroscopic investigation. Vespa M; Dähn R; Grolimund D; Wieland E; Scheidegger AM Environ Sci Technol; 2007 Mar; 41(6):1902-8. PubMed ID: 17410782 [TBL] [Abstract][Full Text] [Related]
39. Spectroscopic vibrations of austinite (CaZnAsO4⋅OH) and its mineral structure: implications for identification of secondary arsenic-containing mineral. Liu J; Ming D; Cheng H; Xu Z; Frost RL Spectrochim Acta A Mol Biomol Spectrosc; 2015 Jan; 135():351-5. PubMed ID: 25087167 [TBL] [Abstract][Full Text] [Related]
40. An alternative method for the treatment of waste produced at a dye and a metal-plating industry using natural and/or waste materials. Fatta D; Papadopoulos A; Stefanakis N; Loizidou M; Savvides C Waste Manag Res; 2004 Aug; 22(4):234-9. PubMed ID: 15462330 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]