These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
136 related articles for article (PubMed ID: 24223280)
1. Phenotypic plasticity of coralline algae in a High CO2 world. Ragazzola F; Foster LC; Form AU; Büscher J; Hansteen TH; Fietzke J Ecol Evol; 2013 Sep; 3(10):3436-46. PubMed ID: 24223280 [TBL] [Abstract][Full Text] [Related]
2. Ocean acidification weakens the structural integrity of coralline algae. Ragazzola F; Foster LC; Form A; Anderson PS; Hansteen TH; Fietzke J Glob Chang Biol; 2012 Sep; 18(9):2804-12. PubMed ID: 24501058 [TBL] [Abstract][Full Text] [Related]
3. INTERACTIONS BETWEEN OCEAN ACIDIFICATION AND WARMING ON THE MORTALITY AND DISSOLUTION OF CORALLINE ALGAE(1). Diaz-Pulido G; Anthony KR; Kline DI; Dove S; Hoegh-Guldberg O J Phycol; 2012 Feb; 48(1):32-9. PubMed ID: 27009647 [TBL] [Abstract][Full Text] [Related]
4. Impact of high CO2 on the geochemistry of the coralline algae Lithothamnion glaciale. Ragazzola F; Foster LC; Jones CJ; Scott TB; Fietzke J; Kilburn MR; Schmidt DN Sci Rep; 2016 Feb; 6():20572. PubMed ID: 26853562 [TBL] [Abstract][Full Text] [Related]
5. Coralline algal structure is more sensitive to rate, rather than the magnitude, of ocean acidification. Kamenos NA; Burdett HL; Aloisio E; Findlay HS; Martin S; Longbone C; Dunn J; Widdicombe S; Calosi P Glob Chang Biol; 2013 Dec; 19(12):3621-8. PubMed ID: 23943376 [TBL] [Abstract][Full Text] [Related]
6. Major loss of coralline algal diversity in response to ocean acidification. Peña V; Harvey BP; Agostini S; Porzio L; Milazzo M; Horta P; Le Gall L; Hall-Spencer JM Glob Chang Biol; 2021 Oct; 27(19):4785-4798. PubMed ID: 34268846 [TBL] [Abstract][Full Text] [Related]
7. Effects of elevated pCO2 on the metabolism of a temperate rhodolith Lithothamnion corallioides grown under different temperatures. Noisette F; Duong G; Six C; Davoult D; Martin S J Phycol; 2013 Aug; 49(4):746-57. PubMed ID: 27007207 [TBL] [Abstract][Full Text] [Related]
8. Coralline algae elevate pH at the site of calcification under ocean acidification. Cornwall CE; Comeau S; McCulloch MT Glob Chang Biol; 2017 Oct; 23(10):4245-4256. PubMed ID: 28370806 [TBL] [Abstract][Full Text] [Related]
9. Influences of salinity on the physiology and distribution of the Arctic coralline algae, Lithothamnion glaciale (Corallinales, Rhodophyta). Schoenrock KM; Bacquet M; Pearce D; Rea BR; Schofield JE; Lea J; Mair D; Kamenos N J Phycol; 2018 Oct; 54(5):690-702. PubMed ID: 30079466 [TBL] [Abstract][Full Text] [Related]
10. One-year experiment on the physiological response of the Mediterranean crustose coralline alga, Lithophyllum cabiochae, to elevated pCO2 and temperature. Martin S; Cohu S; Vignot C; Zimmerman G; Gattuso JP Ecol Evol; 2013 Mar; 3(3):676-93. PubMed ID: 23533024 [TBL] [Abstract][Full Text] [Related]
11. A direct CO Sordo L; Santos R; Reis J; Shulika A; Silva J PeerJ; 2016; 4():e2503. PubMed ID: 27703853 [TBL] [Abstract][Full Text] [Related]
12. Effects of ocean acidification increase embryonic sensitivity to thermal extremes in Atlantic cod, Gadus morhua. Dahlke FT; Leo E; Mark FC; Pörtner HO; Bickmeyer U; Frickenhaus S; Storch D Glob Chang Biol; 2017 Apr; 23(4):1499-1510. PubMed ID: 27718513 [TBL] [Abstract][Full Text] [Related]
13. Global warming offsets the ecophysiological stress of ocean acidification on temperate crustose coralline algae. Kim JH; Kim N; Moon H; Lee S; Jeong SY; Diaz-Pulido G; Edwards MS; Kang JH; Kang EJ; Oh HJ; Hwang JD; Kim IN Mar Pollut Bull; 2020 Aug; 157():111324. PubMed ID: 32658689 [TBL] [Abstract][Full Text] [Related]
14. Coralline algae (Rhodophyta) in a changing world: integrating ecological, physiological, and geochemical responses to global change. McCoy SJ; Kamenos NA J Phycol; 2015 Feb; 51(1):6-24. PubMed ID: 26986255 [TBL] [Abstract][Full Text] [Related]
15. Physiological and biochemical responses of a coralline alga and a sea urchin to climate change: Implications for herbivory. Rich WA; Schubert N; Schläpfer N; Carvalho VF; Horta ACL; Horta PA Mar Environ Res; 2018 Nov; 142():100-107. PubMed ID: 30293660 [TBL] [Abstract][Full Text] [Related]
16. Inorganic carbon uptake strategies in coralline algae: Plasticity across evolutionary lineages under ocean acidification and warming. Bergstrom E; Ordoñez A; Ho M; Hurd C; Fry B; Diaz-Pulido G Mar Environ Res; 2020 Oct; 161():105107. PubMed ID: 32890983 [TBL] [Abstract][Full Text] [Related]
17. Productivity gains do not compensate for reduced calcification under near-future ocean acidification in the photosynthetic benthic foraminifer species Marginopora vertebralis. Uthicke S; Fabricius KE Glob Chang Biol; 2012 Sep; 18(9):2781-91. PubMed ID: 24501056 [TBL] [Abstract][Full Text] [Related]
18. Physiological plasticity and local adaptation to elevated Padilla-Gamiño JL; Gaitán-Espitia JD; Kelly MW; Hofmann GE Evol Appl; 2016 Oct; 9(9):1043-1053. PubMed ID: 27695514 [TBL] [Abstract][Full Text] [Related]
19. Environmental salinity modulates the effects of elevated CO2 levels on juvenile hard-shell clams, Mercenaria mercenaria. Dickinson GH; Matoo OB; Tourek RT; Sokolova IM; Beniash E J Exp Biol; 2013 Jul; 216(Pt 14):2607-18. PubMed ID: 23531824 [TBL] [Abstract][Full Text] [Related]
20. Long-term acclimation to elevated pCO2 alters carbon metabolism and reduces growth in the Antarctic diatom Nitzschia lecointei. Torstensson A; Hedblom M; Mattsdotter Björk M; Chierici M; Wulff A Proc Biol Sci; 2015 Sep; 282(1815):. PubMed ID: 26354939 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]