These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 24223420)

  • 1. Stripping of acetone from water with microfabricated and membrane gas-liquid contactors.
    Constantinou A; Ghiotto F; Lam KF; Gavriilidis A
    Analyst; 2014 Jan; 139(1):266-72. PubMed ID: 24223420
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of multistage distillation in a microfluidic chip.
    Lam KF; Cao E; Sorensen E; Gavriilidis A
    Lab Chip; 2011 Apr; 11(7):1311-7. PubMed ID: 21327250
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hollow fiber gas-liquid membrane contactors for acid gas capture: a review.
    Mansourizadeh A; Ismail AF
    J Hazard Mater; 2009 Nov; 171(1-3):38-53. PubMed ID: 19616376
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gas-liquid-liquid three-phase flow pattern and pressure drop in a microfluidic chip: similarities with gas-liquid/liquid-liquid flows.
    Yue J; Rebrov EV; Schouten JC
    Lab Chip; 2014 May; 14(9):1632-49. PubMed ID: 24651271
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Research Progress in Gas Separation Using Hollow Fiber Membrane Contactors.
    Li L; Ma G; Pan Z; Zhang N; Zhang Z
    Membranes (Basel); 2020 Nov; 10(12):. PubMed ID: 33260435
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Teflon-coated silicon microreactors: impact on segmented liquid-liquid multiphase flows.
    Kuhn S; Hartman RL; Sultana M; Nagy KD; Marre S; Jensen KF
    Langmuir; 2011 May; 27(10):6519-27. PubMed ID: 21510687
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surface modification method of microchannels for gas-liquid two-phase flow in microchips.
    Hibara A; Iwayama S; Matsuoka S; Ueno M; Kikutani Y; Tokeshi M; Kitamori T
    Anal Chem; 2005 Feb; 77(3):943-7. PubMed ID: 15679365
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of ammonia separation from purge gases in microporous hollow fiber membrane contactors.
    Karami MR; Keshavarz P; Khorram M; Mehdipour M
    J Hazard Mater; 2013 Sep; 260():576-84. PubMed ID: 23811379
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of a fully integrated falling film microreactor for gas-liquid-solid biotransformation with surface immobilized O2 -dependent enzyme.
    Bolivar JM; Krämer CE; Ungerböck B; Mayr T; Nidetzky B
    Biotechnol Bioeng; 2016 Sep; 113(9):1862-72. PubMed ID: 26927978
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Membrane-based microchannel device for continuous quantitative extraction of dissolved free sulfide from water and from oil.
    Toda K; Ebisu Y; Hirota K; Ohira S
    Anal Chim Acta; 2012 Sep; 741():38-46. PubMed ID: 22840703
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surface-directed liquid flow inside microchannels.
    Zhao B; Moore JS; Beebe DJ
    Science; 2001 Feb; 291(5506):1023-6. PubMed ID: 11161212
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On chip steady liquid-gas phase separation for flexible generation of dissolved gas concentration gradient.
    Xu BY; Hu SW; Yan XN; Xia XH; Xu JJ; Chen HY
    Lab Chip; 2012 Apr; 12(7):1281-8. PubMed ID: 22336913
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Particle separation by a moving air-liquid interface in a microchannel.
    Wang F; Chon CH; Li D
    J Colloid Interface Sci; 2010 Dec; 352(2):580-4. PubMed ID: 20851407
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pressure drop of slug flow in microchannels with increasing void fraction: experiment and modeling.
    Molla S; Eskin D; Mostowfi F
    Lab Chip; 2011 Jun; 11(11):1968-78. PubMed ID: 21512682
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Liquid membrane operations in a microfluidic device for selective separation of metal ions.
    Maruyama T; Matsushita H; Uchida J; Kubota F; Kamiya N; Goto M
    Anal Chem; 2004 Aug; 76(15):4495-500. PubMed ID: 15283593
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A critical review in recent progress of hollow fiber membrane contactors for efficient CO
    Imtiaz A; Othman MHD; Jilani A; Khan IU; Kamaludin R; Ayub M; Samuel O; Kurniawan TA; Hashim N; Puteh MH
    Chemosphere; 2023 Jun; 325():138300. PubMed ID: 36893870
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stabilization of liquid interface and control of two-phase confluence and separation in glass microchips by utilizing octadecylsilane modification of microchannels.
    Hibara A; Nonaka M; Hisamoto H; Uchiyama K; Kikutani Y; Tokeshi M; Kitamori T
    Anal Chem; 2002 Apr; 74(7):1724-8. PubMed ID: 12033266
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Water slug formation and motion in gas flow channels: the effects of geometry, surface wettability, and gravity.
    Cheah MJ; Kevrekidis IG; Benziger JB
    Langmuir; 2013 Aug; 29(31):9918-34. PubMed ID: 23876035
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of polymer concentration on the structure and performance of PEI hollow fiber membrane contactor for CO2 stripping.
    Naim R; Ismail AF
    J Hazard Mater; 2013 Apr; 250-251():354-61. PubMed ID: 23474409
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interphase Surface Stability in Liquid-Liquid Membrane Contactors Based on Track-Etched Membranes.
    Bazhenov S; Kristavchuk O; Kostyanaya M; Belogorlov A; Ashimov R; Apel P
    Membranes (Basel); 2021 Nov; 11(12):. PubMed ID: 34940449
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.