These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

313 related articles for article (PubMed ID: 24223849)

  • 1. Ketogenic diet improves forelimb motor function after spinal cord injury in rodents.
    Streijger F; Plunet WT; Lee JH; Liu J; Lam CK; Park S; Hilton BJ; Fransen BL; Matheson KA; Assinck P; Kwon BK; Tetzlaff W
    PLoS One; 2013; 8(11):e78765. PubMed ID: 24223849
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Low-energy extracorporeal shock wave therapy promotes vascular endothelial growth factor expression and improves locomotor recovery after spinal cord injury.
    Yamaya S; Ozawa H; Kanno H; Kishimoto KN; Sekiguchi A; Tateda S; Yahata K; Ito K; Shimokawa H; Itoi E
    J Neurosurg; 2014 Dec; 121(6):1514-25. PubMed ID: 25280090
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Combined SCI and TBI: recovery of forelimb function after unilateral cervical spinal cord injury (SCI) is retarded by contralateral traumatic brain injury (TBI), and ipsilateral TBI balances the effects of SCI on paw placement.
    Inoue T; Lin A; Ma X; McKenna SL; Creasey GH; Manley GT; Ferguson AR; Bresnahan JC; Beattie MS
    Exp Neurol; 2013 Oct; 248():136-47. PubMed ID: 23770071
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rehabilitative training improves skilled forelimb motor function after cervical unilateral contusion spinal cord injury in rats.
    Lucas-Osma AM; Schmidt EKA; Vavrek R; Bennett DJ; Fouad K; Fenrich KK
    Behav Brain Res; 2022 Mar; 422():113731. PubMed ID: 34979221
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative assessment of forelimb motor function after cervical spinal cord injury in rats: relationship to the corticospinal tract.
    Anderson KD; Gunawan A; Steward O
    Exp Neurol; 2005 Jul; 194(1):161-74. PubMed ID: 15899253
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of a ketogenic diet for improvement of neurological recovery in individuals with acute spinal cord injury: study protocol for a randomized controlled trial.
    Demirel A; Li J; Morrow C; Barnes S; Jansen J; Gower B; Kirksey K; Redden D; Yarar-Fisher C
    Trials; 2020 May; 21(1):372. PubMed ID: 32366293
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reduction of epileptiform activity in ketogenic mice: The role of monocarboxylate transporters.
    Forero-Quintero LS; Deitmer JW; Becker HM
    Sci Rep; 2017 Jul; 7(1):4900. PubMed ID: 28687765
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Forelimb locomotor assessment scale (FLAS): novel assessment of forelimb dysfunction after cervical spinal cord injury.
    Anderson KD; Sharp KG; Hofstadter M; Irvine KA; Murray M; Steward O
    Exp Neurol; 2009 Nov; 220(1):23-33. PubMed ID: 19733168
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Low-energy extracorporeal shock wave therapy for promotion of vascular endothelial growth factor expression and angiogenesis and improvement of locomotor and sensory functions after spinal cord injury.
    Yahata K; Kanno H; Ozawa H; Yamaya S; Tateda S; Ito K; Shimokawa H; Itoi E
    J Neurosurg Spine; 2016 Dec; 25(6):745-755. PubMed ID: 27367940
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neuroprotective Effect of Ketone Metabolism on Inhibiting Inflammatory Response by Regulating Macrophage Polarization After Acute Cervical Spinal Cord Injury in Rats.
    Lin J; Huang Z; Liu J; Huang Z; Liu Y; Liu Q; Yang Z; Li R; Wu X; Shi Z; Zhu Q; Wu X
    Front Neurosci; 2020; 14():583611. PubMed ID: 33192269
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dietary restriction started after spinal cord injury improves functional recovery.
    Plunet WT; Streijger F; Lam CK; Lee JH; Liu J; Tetzlaff W
    Exp Neurol; 2008 Sep; 213(1):28-35. PubMed ID: 18585708
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neuroprotective effects of a ketogenic diet in combination with exogenous ketone salts following acute spinal cord injury.
    Tan BT; Jiang H; Moulson AJ; Wu XL; Wang WC; Liu J; Plunet WT; Tetzlaff W
    Neural Regen Res; 2020 Oct; 15(10):1912-1919. PubMed ID: 32246640
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Longitudinal electrophysiological changes after cervical hemi-contusion spinal cord injury in rats.
    Huang Z; Li R; Liu J; Huang Z; Hu Y; Wu X; Zhu Q
    Neurosci Lett; 2018 Jan; 664():116-122. PubMed ID: 29138091
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ketogenic Metabolism Inhibits Histone Deacetylase (HDAC) and Reduces Oxidative Stress After Spinal Cord Injury in Rats.
    Wang X; Wu X; Liu Q; Kong G; Zhou J; Jiang J; Wu X; Huang Z; Su W; Zhu Q
    Neuroscience; 2017 Dec; 366():36-43. PubMed ID: 29024787
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of a graded cervical hemicontusion spinal cord injury model in adult male rats.
    Dunham KA; Siriphorn A; Chompoopong S; Floyd CL
    J Neurotrauma; 2010 Nov; 27(11):2091-106. PubMed ID: 21087156
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Graded unilateral cervical spinal cord injury in the rat: evaluation of forelimb recovery and histological effects.
    Soblosky JS; Song JH; Dinh DH
    Behav Brain Res; 2001 Feb; 119(1):1-13. PubMed ID: 11164520
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mild experimental ketosis increases brain uptake of 11C-acetoacetate and 18F-fluorodeoxyglucose: a dual-tracer PET imaging study in rats.
    Pifferi F; Tremblay S; Croteau E; Fortier M; Tremblay-Mercier J; Lecomte R; Cunnane SC
    Nutr Neurosci; 2011 Mar; 14(2):51-8. PubMed ID: 21605500
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Systemic bisperoxovanadium activates Akt/mTOR, reduces autophagy, and enhances recovery following cervical spinal cord injury.
    Walker CL; Walker MJ; Liu NK; Risberg EC; Gao X; Chen J; Xu XM
    PLoS One; 2012; 7(1):e30012. PubMed ID: 22253859
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Forelimb motor performance following cervical spinal cord contusion injury in the rat.
    Schrimsher GW; Reier PJ
    Exp Neurol; 1992 Sep; 117(3):287-98. PubMed ID: 1397165
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spinal pathways involved in the control of forelimb motor function in rats.
    Anderson KD; Gunawan A; Steward O
    Exp Neurol; 2007 Aug; 206(2):318-31. PubMed ID: 17603042
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.