BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

284 related articles for article (PubMed ID: 2422385)

  • 1. Generalized kinetic analysis of ion-driven cotransport systems: II. Random ligand binding as a simple explanation for non-michaelian kinetics.
    Sanders D
    J Membr Biol; 1986; 90(1):67-87. PubMed ID: 2422385
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Generalized kinetic analysis of ion-driven cotransport systems: a unified interpretation of selective ionic effects on Michaelis parameters.
    Sanders D; Hansen UP; Gradmann D; Slayman CL
    J Membr Biol; 1984; 77(2):123-52. PubMed ID: 6708088
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interpretation of steady-state current-voltage curves: consequences and implications of current subtraction in transport studies.
    Blatt MR
    J Membr Biol; 1986; 92(1):91-110. PubMed ID: 3746894
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrogenic properties of the cloned Na+/glucose cotransporter: II. A transport model under nonrapid equilibrium conditions.
    Parent L; Supplisson S; Loo DD; Wright EM
    J Membr Biol; 1992 Jan; 125(1):63-79. PubMed ID: 1294062
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microscopic description of voltage effects on ion-driven cotransport systems.
    Läuger P; Jauch P
    J Membr Biol; 1986; 91(3):275-84. PubMed ID: 2427727
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetic analysis of a family of cotransport models.
    Turner RJ
    Biochim Biophys Acta; 1981 Dec; 649(2):269-80. PubMed ID: 7317398
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Experimental analysis of ion/solute cotransport by substrate binding and facilitated diffusion.
    Wright JK
    Biochim Biophys Acta; 1986 Jan; 854(2):219-30. PubMed ID: 3942727
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interpretation of current-voltage relationships for "active" ion transport systems: I. Steady-state reaction-kinetic analysis of class-I mechanisms.
    Hansen UP; Gradmann D; Sanders D; Slayman CL
    J Membr Biol; 1981; 63(3):165-90. PubMed ID: 7310856
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of unstirred layers on the kinetics of carrier-mediated solute transport by two systems.
    Preston RL
    Biochim Biophys Acta; 1982 Jun; 688(2):422-8. PubMed ID: 7104333
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reaction mechanism of the reconstituted aspartate/glutamate carrier from bovine heart mitochondria.
    Dierks T; Riemer E; Krämer R
    Biochim Biophys Acta; 1988 Aug; 943(2):231-44. PubMed ID: 2900025
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular mechanism of acetylcholine receptor-controlled ion translocation across cell membranes.
    Cash DJ; Hess GP
    Proc Natl Acad Sci U S A; 1980 Feb; 77(2):842-6. PubMed ID: 6928684
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mutual interaction of ion uptake and membrane potential.
    Borst-Pauwels GW
    Biochim Biophys Acta; 1993 Jan; 1145(1):15-24. PubMed ID: 8422406
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of kinetic data in transport studies: new insights from kinetic studies of Na(+)-D-glucose cotransport in human intestinal brush-border membrane vesicles using a fast sampling, rapid filtration apparatus.
    Malo C; Berteloot A
    J Membr Biol; 1991 Jun; 122(2):127-41. PubMed ID: 1895338
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Presteady-state kinetics and carrier-mediated transport: a theoretical analysis.
    Wierzbicki W; Berteloot A; Roy G
    J Membr Biol; 1990 Jul; 117(1):11-27. PubMed ID: 2402006
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coupling in secondary transport. Effect of electrical potentials on the kinetics of ion linked co-transport.
    Geck P; Heinz E
    Biochim Biophys Acta; 1976 Aug; 443(1):49-63. PubMed ID: 8129
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrogenic properties of the sodium-alanine cotransporter in pancreatic acinar cells: II. Comparison with transport models.
    Jauch P; Läuger P
    J Membr Biol; 1986; 94(2):117-27. PubMed ID: 3560198
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Testing and characterizing enzymes and membrane-bound carrier proteins acting on amphipathic ligands in the presence of bilayer membrane material and soluble binding protein. Application to the uptake of oleate into isolated cells.
    Heirwegh KP; Meuwissen JA
    Biochem J; 1992 Jun; 284 ( Pt 2)(Pt 2):353-61. PubMed ID: 1599418
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The thermostatics and thermodynamics of cotransport.
    Naftalin RJ
    Biochim Biophys Acta; 1984 Nov; 778(1):155-75. PubMed ID: 6093878
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetics of ion translocation across charged membranes mediated by a two-site transport mechanism. Effects of polyvalent cations upon rubidium uptake into yeast cells.
    Theuvenet AP; Borst-Pauwels GW
    Biochim Biophys Acta; 1976 Apr; 426(4):745-56. PubMed ID: 4106
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetic analysis of mechanism of intestinal Na+-dependent sugar transport.
    Restrepo D; Kimmich GA
    Am J Physiol; 1985 May; 248(5 Pt 1):C498-509. PubMed ID: 3993771
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.