These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 24223869)

  • 1. Reorienting in virtual 3D environments: do adult humans use principal axes, medial axes or local geometry?
    Ambosta AH; Reichert JF; Kelly DM
    PLoS One; 2013; 8(11):e78985. PubMed ID: 24223869
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Geometric orientation by humans: angles weigh in.
    Lubyk DM; Dupuis B; GutiƩrrez L; Spetch ML
    Psychon Bull Rev; 2012 Jun; 19(3):436-42. PubMed ID: 22382695
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Re-orienting in space: do animals use global or local geometry strategies?
    Kelly DM; Chiandetti C; Vallortigara G
    Biol Lett; 2011 Jun; 7(3):372-5. PubMed ID: 21159689
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Orientation in trapezoid-shaped enclosures: implications for theoretical accounts of geometry learning.
    Sturz BR; Gurley T; Bodily KD
    J Exp Psychol Anim Behav Process; 2011 Apr; 37(2):246-53. PubMed ID: 21319918
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Size does not matter, but features do: Clark's nutcrackers (Nucifraga columbiana) weigh features more heavily than geometry in large and small enclosures.
    Lambinet V; Wilzeck C; Kelly DM
    Behav Processes; 2014 Feb; 102():3-11. PubMed ID: 24378211
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enclosure size and the use of local and global geometric cues for reorientation.
    Sturz BR; Forloines MR; Bodily KD
    Psychon Bull Rev; 2012 Apr; 19(2):270-6. PubMed ID: 22218783
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Use of local and global geometry from object arrays by adult humans.
    Reichert JF; Kelly DM
    Behav Processes; 2011 Feb; 86(2):196-205. PubMed ID: 21144887
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spatial reorientation by geometry in bumblebees.
    Sovrano VA; Rigosi E; Vallortigara G
    PLoS One; 2012; 7(5):e37449. PubMed ID: 22624033
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Use of medial axis for reorientation by the Clark's nutcracker (Nucifraga columbiana).
    Kelly DM; Bisbing TA; Magnotti JF
    Behav Processes; 2019 Jan; 158():192-199. PubMed ID: 30508564
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reorientation in diamond-shaped environments: encoding of features and angles in enclosures versus arrays by adult humans and pigeons (Columbia livia).
    Lubyk DM; Spetch ML; Zhou R; Pisklak J; Mou W
    Anim Cogn; 2013 Jul; 16(4):565-81. PubMed ID: 23299225
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Does constraining field of view prevent extraction of geometric cues for humans during virtual-environment reorientation?
    Sturz BR; Kilday ZA; Bodily KD
    J Exp Psychol Anim Behav Process; 2013 Oct; 39(4):390-6. PubMed ID: 23815384
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spatial encoding in mountain chickadees: features overshadow geometry.
    Gray ER; Bloomfield LL; Ferrey A; Spetch ML; Sturdy CB
    Biol Lett; 2005 Sep; 1(3):314-7. PubMed ID: 17148196
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transfer of spatial search between environments in human adults and young children (Homo sapiens): implications for representation of local geometry by spatial systems.
    Lew AR; Usherwood B; Fragkioudaki F; Koukoumi V; Smith SP; Austen JM; McGregor A
    Dev Psychobiol; 2014 Apr; 56(3):421-34. PubMed ID: 23532957
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Incidental encoding of enclosure geometry does not require visual input: evidence from blindfolded adults.
    Sturz BR; Gaskin KA; Roberts JE
    Mem Cognit; 2014 Aug; 42(6):935-42. PubMed ID: 24733363
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Experience and geometry: controlled-rearing studies with chicks.
    Chiandetti C; Vallortigara G
    Anim Cogn; 2010 May; 13(3):463-70. PubMed ID: 19960217
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Orienting in virtual environments: How are surface features and environmental geometry weighted in an orientation task?
    Kelly DM; Bischof WF
    Cognition; 2008 Oct; 109(1):89-104. PubMed ID: 18834974
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Encoding of relative enclosure size in a dynamic three-dimensional virtual environment by humans.
    Sturz BR; Kelly DM
    Behav Processes; 2009 Oct; 82(2):223-7. PubMed ID: 19576273
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spatial reorientation in large and small enclosures: comparative and developmental perspectives.
    Chiandetti C; Vallortigara G
    Cogn Process; 2008 Dec; 9(4):229-38. PubMed ID: 18196304
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Testing principal- versus medial-axis accounts of global spatial reorientation.
    Bodily KD; Sullens DG; Price SJ; Sturz BR
    J Exp Psychol Anim Learn Cogn; 2018 Apr; 44(2):209-215. PubMed ID: 29461069
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Angles no longer weigh in: The effect of geometric cue directness on reorientation.
    Huang Z; Hu Q; Shao Y
    J Exp Psychol Learn Mem Cogn; 2017 Jul; 43(7):1147-1153. PubMed ID: 28114779
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.