These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 24223958)

  • 1. Fungal garden making inside bamboos by a non-social fungus-growing beetle.
    Toki W; Takahashi Y; Togashi K
    PLoS One; 2013; 8(11):e79515. PubMed ID: 24223958
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fungal farming in a non-social beetle.
    Toki W; Tanahashi M; Togashi K; Fukatsu T
    PLoS One; 2012; 7(7):e41893. PubMed ID: 22848648
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nutritional resources of the yeast symbiont cultivated by the lizard beetle Doubledaya bucculenta in bamboos.
    Toki W; Aoki D
    Sci Rep; 2021 Sep; 11(1):19208. PubMed ID: 34584161
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Time-dependent oviposition deterrence by an oviposition mark in a fungus-farming lizard beetle.
    Miyazaki Y; Toki W
    Naturwissenschaften; 2020 Nov; 107(6):53. PubMed ID: 33244637
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Heads or tails: exaggerated morphologies in relation to the use of large bamboo internodes in two lizard beetles, Doubledaya ruficollis and Oxylanguria acutipennis (Coleoptera: Erotylidae: Languriinae).
    Toki W; Matsuo S; Pham HT; Meleng P; Lee CY
    Naturwissenschaften; 2019 Aug; 106(9-10):50. PubMed ID: 31456022
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exaggerated asymmetric head morphology of female Doubledaya bucculenta (Coleoptera: Erotylidae: Languriinae) and ovipositional preference for bamboo internodes.
    Toki W; Togashi K
    Zoolog Sci; 2011 May; 28(5):348-54. PubMed ID: 21557658
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Abundance and dynamics of filamentous fungi in the complex ambrosia gardens of the primitively eusocial beetle Xyleborinus saxesenii Ratzeburg (Coleoptera: Curculionidae, Scolytinae).
    Biedermann PH; Klepzig KD; Taborsky M; Six DL
    FEMS Microbiol Ecol; 2013 Mar; 83(3):711-23. PubMed ID: 23057948
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Yeast associated with flower longicorn beetle Leptura ochraceofasciata (Cerambycidae: Lepturinae), with implication for its function in symbiosis.
    Kishigami M; Matsuoka F; Maeno A; Yamagishi S; Abe H; Toki W
    PLoS One; 2023; 18(3):e0282351. PubMed ID: 36947508
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fatty Acid Composition of Novel Host Jack Pine Do Not Prevent Host Acceptance and Colonization by the Invasive Mountain Pine Beetle and Its Symbiotic Fungus.
    Ishangulyyeva G; Najar A; Curtis JM; Erbilgin N
    PLoS One; 2016; 11(9):e0162046. PubMed ID: 27583820
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bacterial and Fungal Midgut Community Dynamics and Transfer Between Mother and Brood in the Asian Longhorned Beetle (Anoplophora glabripennis), an Invasive Xylophage.
    Mason CJ; Campbell AM; Scully ED; Hoover K
    Microb Ecol; 2019 Jan; 77(1):230-242. PubMed ID: 29948017
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Four mycangium types and four genera of ambrosia fungi suggest a complex history of fungus farming in the ambrosia beetle tribe Xyloterini.
    Mayers CG; Harrington TC; Mcnew DL; Roeper RA; Biedermann PHW; Masuya H; Bateman CC
    Mycologia; 2020; 112(6):1104-1137. PubMed ID: 32552515
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Symbiont selection via alcohol benefits fungus farming by ambrosia beetles.
    Ranger CM; Biedermann PHW; Phuntumart V; Beligala GU; Ghosh S; Palmquist DE; Mueller R; Barnett J; Schultz PB; Reding ME; Benz JP
    Proc Natl Acad Sci U S A; 2018 Apr; 115(17):4447-4452. PubMed ID: 29632193
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dietary potential of the symbiotic fungus
    Guo W; Song Y; Chen H; Li X
    Appl Environ Microbiol; 2024 Apr; 90(4):e0153723. PubMed ID: 38445862
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mutualism promotes insect fitness by fungal nutrient compensation and facilitates fungus propagation by mediating insect oviposition preference.
    Gu F; Ai S; Chen Y; Jin S; Xie X; Zhang T; Zhong G; Yi X
    ISME J; 2022 Jul; 16(7):1831-1842. PubMed ID: 35418221
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genome Sequencing and Analysis of the Fungal Symbiont of Sirex noctilio, Amylostereum areolatum: Revealing the Biology of Fungus-Insect Mutualism.
    Fu N; Wang M; Wang L; Luo Y; Ren L
    mSphere; 2020 May; 5(3):. PubMed ID: 32404513
    [No Abstract]   [Full Text] [Related]  

  • 16. Initial Response by a Native Beetle, Chrysochus auratus (Coleoptera: Chrysomelidae), to a Novel Introduced Host-Plant, Vincetoxicum rossicum (Gentianales: Apocynaceae).
    deJonge RB; Bourchier RS; Smith SM
    Environ Entomol; 2017 Jun; 46(3):617-625. PubMed ID: 28398528
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanisms underlying sawtoothed grain beetle (Oryzaephilus surinamensis [L.]) (Coleoptera: Silvanidae) infestation of consumer food packaging materials.
    Mowery SV; Mullen MA; Campbell JF; Broce AB
    J Econ Entomol; 2002 Dec; 95(6):1333-6. PubMed ID: 12539851
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Brazilian social bee must cultivate fungus to survive.
    Menezes C; Vollet-Neto A; Marsaioli AJ; Zampieri D; Fontoura IC; Luchessi AD; Imperatriz-Fonseca VL
    Curr Biol; 2015 Nov; 25(21):2851-2855. PubMed ID: 26592344
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nematode-free agricultural system of a fungus-growing termite.
    Kanzaki N; Liang WR; Chiu CI; Yang CT; Hsueh YP; Li HF
    Sci Rep; 2019 Jun; 9(1):8917. PubMed ID: 31222010
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Ambrosia Symbiosis: From Evolutionary Ecology to Practical Management.
    Hulcr J; Stelinski LL
    Annu Rev Entomol; 2017 Jan; 62():285-303. PubMed ID: 27860522
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.