These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 24224073)

  • 1. Size reduction and radiation pattern shaping of multi-fed DCC slot antennas used in conformal microwave array hyperthermia applicators.
    Maccarini PF; Arunachalam K; Martins CD; Stauffer PR
    Proc SPIE Int Soc Opt Eng; 2009 Feb; 7181():. PubMed ID: 24224073
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Shaping and resizing of multifed slot radiators used in conformal microwave antenna arrays for hyperthermia treatment of large superficial diseases.
    Maccarini PF; Arunachalam K; Juang T; De Luca V; Rangarao S; Neumann D; Martins CD; Craciunescu O; Stauffer PR
    Int Conf Electromagn Adv Appl; 2009; ():. PubMed ID: 24352575
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimization of a dual concentric conductor antenna for superficial hyperthermia applications.
    Maccarini PF; Rolfsnes HO; Neuman D; Stauffer P
    Conf Proc IEEE Eng Med Biol Soc; 2004; 2004():2518-21. PubMed ID: 17270785
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Theoretical characterization of dual concentric conductor microwave applicators for hyperthermia at 433 MHz.
    Rossetto F; Stauffer PR
    Int J Hyperthermia; 2001; 17(3):258-70. PubMed ID: 11347730
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dual-mode antenna design for microwave heating and noninvasive thermometry of superficial tissue disease.
    Jacobsen S; Stauffer PR; Neuman DG
    IEEE Trans Biomed Eng; 2000 Nov; 47(11):1500-9. PubMed ID: 11077744
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction of heating patterns of a microwave interstitial antenna array at various insertion depths.
    Zhang Y; Joines WT; Oleson JR
    Int J Hyperthermia; 1991; 7(1):197-207. PubMed ID: 2051073
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of practical layered dielectric loads on SAR patterns from dual concentric conductor microstrip antennas.
    Rossetto F; Stauffer PR; Manfrini V; Diederich CJ; Biffi Gentili G
    Int J Hyperthermia; 1998; 14(6):553-71. PubMed ID: 9886662
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design of Site-Specific Microwave Phased Array Hyperthermia Applicators Using 434 MHz Reduced Cavity-Backed Patch Antenna.
    Baskaran D; Arunachalam K
    Bioelectromagnetics; 2020 Dec; 41(8):630-648. PubMed ID: 32956531
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multi-Band Miniaturized Patch Antennas for a Compact, Shielded Microwave Breast Imaging Array.
    Aguilar SM; Al-Joumayly MA; Burfeindt MJ; Behdad N; Hagness SC
    IEEE Trans Antennas Propag; 2013 Dec; 62(3):1221-1231. PubMed ID: 25392561
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of six microwave antennas for hyperthermia treatment of cancer: sar results for single antennas and arrays.
    Ryan TP
    Int J Radiat Oncol Biol Phys; 1991 Jul; 21(2):403-13. PubMed ID: 2061117
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Radiation patterns of dual concentric conductor microstrip antennas for superficial hyperthermia.
    Stauffer PR; Rossetto F; Leoncini M; Gentilli GB
    IEEE Trans Biomed Eng; 1998 May; 45(5):605-13. PubMed ID: 9581059
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermal and SAR characterization of multielement dual concentric conductor microwave applicators for hyperthermia, a theoretical investigation.
    Rossetto F; Diederich CJ; Stauffer PR
    Med Phys; 2000 Apr; 27(4):745-53. PubMed ID: 10798697
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design and characterisation of miniaturised cavity-backed patch antenna for microwave hyperthermia.
    Chakaravarthi G; Arunachalam K
    Int J Hyperthermia; 2015; 31(7):737-48. PubMed ID: 26365603
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conformal microwave array (CMA) applicators for hyperthermia of diffuse chest wall recurrence.
    Stauffer PR; Maccarini P; Arunachalam K; Craciunescu O; Diederich C; Juang T; Rossetto F; Schlorff J; Milligan A; Hsu J; Sneed P; Vujaskovic Z
    Int J Hyperthermia; 2010; 26(7):686-98. PubMed ID: 20849262
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The distribution of power and heat produced by interstitial microwave antenna arrays: I. Comparative phantom and canine studies.
    Denman DL; Elson HR; Lewis GC; Breneman JC; Clausen CL; Dine J; Aron BS
    Int J Radiat Oncol Biol Phys; 1988 Jan; 14(1):127-37. PubMed ID: 3335448
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design and characterisation of a phased antenna array for intact breast hyperthermia.
    Curto S; Garcia-Miquel A; Suh M; Vidal N; Lopez-Villegas JM; Prakash P
    Int J Hyperthermia; 2018 May; 34(3):250-260. PubMed ID: 28605946
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microwave ablation of ex vivo bovine tissues using a dual slot antenna with a floating metallic sleeve.
    Ibitoye AZ; Nwoye EO; Aweda AM; Oremosu AA; Anunobi CC; Akanmu NO
    Int J Hyperthermia; 2016 Dec; 32(8):923-930. PubMed ID: 27431435
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Theoretical limits of SAR distributions of a four-element square array of dipole-type antennas.
    Fan CJ; Leybovich LB; Devanna WG; Kurup RG
    Med Phys; 1994 Nov; 21(11):1665-70. PubMed ID: 7891625
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of a patch antenna applicator for time reversal hyperthemia.
    Dobsícek Trefná H; Vrba J; Persson M
    Int J Hyperthermia; 2010; 26(2):185-97. PubMed ID: 20146572
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermal distribution studies of helical coil microwave antennas for interstitial hyperthermia.
    Satoh T; Stauffer PR; Fike JR
    Int J Radiat Oncol Biol Phys; 1988 Nov; 15(5):1209-18. PubMed ID: 3182353
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.