These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
23. Comparison of Trap Designs for Detection of Euwallacea nr. fornicatus and Other Scolytinae (Coleoptera: Curculionidae) That Vector Fungal Pathogens of Avocado Trees in Florida. Kendra PE; Montgomery WS; Narvaez TI; Carrillo D J Econ Entomol; 2020 Apr; 113(2):980-987. PubMed ID: 31742602 [TBL] [Abstract][Full Text] [Related]
24. Genetic Variability Among Xyleborus glabratus Populations Native to Southeast Asia (Coleoptera: Curculionidae: Scolytinae: Xyleborini) and the Description of Two Related Species. Cognato AI; Smith SM; Li Y; Pham TH; Hulcr J J Econ Entomol; 2019 May; 112(3):1274-1284. PubMed ID: 30785204 [TBL] [Abstract][Full Text] [Related]
25. First Report of Laurel Wilt Caused by Raffaelea lauricola on Bay Laurel (Laurus nobilis) in the United States. Hughes MA; Black A; Smith JA Plant Dis; 2014 Aug; 98(8):1159. PubMed ID: 30708827 [TBL] [Abstract][Full Text] [Related]
26. Comparing Avocado, Swamp Bay, and Camphortree as Hosts of Raffaelea lauricola Using a Green Fluorescent Protein (GFP)-Labeled Strain of the Pathogen. Campbell AS; Ploetz RC; Rollins JA Phytopathology; 2017 Jan; 107(1):70-74. PubMed ID: 27602540 [TBL] [Abstract][Full Text] [Related]
27. Temporal analysis of sesquiterpene emissions from manuka and phoebe oil lures and efficacy for attraction of Xyleborus glabratus (Coleoptera: Curculionidae: Scolytinae). Kendra PE; Niogret J; Montgomery WS; Sanchez JS; Deyrup MA; Pruett GE; Ploetz RC; Epsky ND; Heath RR J Econ Entomol; 2012 Apr; 105(2):659-69. PubMed ID: 22606839 [TBL] [Abstract][Full Text] [Related]
28. Effect of trap type, trap position, time of year, and beetle density on captures of the redbay ambrosia beetle (Coleoptera: Curculionidae: Scolytinae). Hanula JL; Ulyshen MD; Horn S J Econ Entomol; 2011 Apr; 104(2):501-8. PubMed ID: 21510198 [TBL] [Abstract][Full Text] [Related]
29. First Report of Gulf Licaria, Licaria trianda, as a Suscept of Laurel Wilt. Ploetz RC; Konkol J Plant Dis; 2013 Sep; 97(9):1248. PubMed ID: 30722454 [TBL] [Abstract][Full Text] [Related]
30. Presence of the causal agent of laurel wilt disease in sassafras-associated insects. Knutsen MC; Rieske LK Environ Entomol; 2023 Dec; 52(6):1042-1047. PubMed ID: 37738471 [TBL] [Abstract][Full Text] [Related]
31. A New Repellent for Redbay Ambrosia Beetle (Coleoptera: Curculionidae: Scolytinae), Primary Vector of the Mycopathogen That Causes Laurel Wilt. Cloonan KR; Montgomery WS; Narvaez TI; Kendra PE Plants (Basel); 2023 Jun; 12(13):. PubMed ID: 37446966 [TBL] [Abstract][Full Text] [Related]
32. The Fungus Raffaelea lauricola Modifies Behavior of Its Symbiont and Vector, the Redbay Ambrosia Beetle (Xyleborus Glabratus), by Altering Host Plant Volatile Production. Martini X; Hughes MA; Killiny N; George J; Lapointe SL; Smith JA; Stelinski LL J Chem Ecol; 2017 May; 43(5):519-531. PubMed ID: 28455797 [TBL] [Abstract][Full Text] [Related]
33. Isolations from the redbay ambrosia beetle, Xyleborus glabratus, confirm that the laurel wilt pathogen, Raffaelea lauricola, originated in Asia. Harrington TC; Yun HY; Lu SS; Goto H; Aghayeva DN; Fraedrich SW Mycologia; 2011; 103(5):1028-36. PubMed ID: 21471288 [TBL] [Abstract][Full Text] [Related]
34. Community of Bark and Ambrosia Beetles (Coleoptera: Curculionidae: Scolytinae and Platypodinae) in Agricultural and Forest Ecosystems with Laurel Wilt. Cloonan KR; Montgomery WS; Narvaez TI; Carrillo D; Kendra PE Insects; 2022 Oct; 13(11):. PubMed ID: 36354793 [TBL] [Abstract][Full Text] [Related]
35. Manuka oil and phoebe oil are attractive baits for Xyleborus glabratus (Coleoptera: Scolytinae), the vector of laurel wilt. Hanula JL; Sullivan B Environ Entomol; 2008 Dec; 37(6):1403-9. PubMed ID: 19161682 [TBL] [Abstract][Full Text] [Related]
36. Genomic comparisons of the laurel wilt pathogen, Raffaelea lauricola, and related tree pathogens highlight an arsenal of pathogenicity related genes. Ibarra Caballero JR; Jeon J; Lee YH; Fraedrich S; Klopfenstein NB; Kim MS; Stewart JE Fungal Genet Biol; 2019 Apr; 125():84-92. PubMed ID: 30716558 [TBL] [Abstract][Full Text] [Related]
37. First Report of Laurel Wilt Disease Caused by Raffaelea lauricola on Silk Bay in Florida. Hughes MA; Shin K; Eickwort J; Smith JA Plant Dis; 2012 Jun; 96(6):910. PubMed ID: 30727386 [TBL] [Abstract][Full Text] [Related]
38. Rapid Detection of Hamilton JL; Workman JN; Nairn CJ; Fraedrich SW; Villari C Plant Dis; 2020 Dec; 104(12):3151-3158. PubMed ID: 33079016 [TBL] [Abstract][Full Text] [Related]
39. Potential of contact insecticides to control Xyleborus glabratus (Coleoptera: Curculionidae), a vector of laurel wilt disease in avocados. Carrillo D; Crane JH; Peña JE J Econ Entomol; 2013 Dec; 106(6):2286-95. PubMed ID: 24498726 [TBL] [Abstract][Full Text] [Related]
40. Xyleborus bispinatus Reared on Artificial Media in the Presence or Absence of the Laurel Wilt Pathogen (Raffaelea lauricola). Menocal O; Cruz LF; Kendra PE; Crane JH; Cooperband MF; Ploetz RC; Carrillo D Insects; 2018 Feb; 9(1):. PubMed ID: 29495585 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]