These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
232 related articles for article (PubMed ID: 24224251)
61. Quantification of propagules of the laurel wilt fungus and other mycangial fungi from the redbay ambrosia beetle, Xyleborus glabratus. Harrington TC; Fraedrich SW Phytopathology; 2010 Oct; 100(10):1118-23. PubMed ID: 20839947 [TBL] [Abstract][Full Text] [Related]
62. Sap flow, xylem anatomy and photosynthetic variables of three Persea species in response to laurel wilt. Castillo-Argaez R; Vazquez A; Konkol JL; Vargas AI; Ploetz RC; Etxeberria E; Schaffer B Tree Physiol; 2021 Jun; 41(6):1004-1018. PubMed ID: 33079164 [TBL] [Abstract][Full Text] [Related]
63. Use of Semiochemicals for the Management of the Redbay Ambrosia Beetle. Martini X; Hughes MA; Conover D; Smith J Insects; 2020 Nov; 11(11):. PubMed ID: 33202748 [TBL] [Abstract][Full Text] [Related]
64. Genomic and transcriptomic insights into Raffaelea lauricola pathogenesis. Zhang Y; Zhang J; Vanderpool D; Smith JA; Rollins JA BMC Genomics; 2020 Aug; 21(1):570. PubMed ID: 32819276 [TBL] [Abstract][Full Text] [Related]
65. Host switching by an ambrosia beetle fungal mutualist: Mycangial colonization of indigenous beetles by the invasive laurel wilt fungal pathogen. Joseph R; Bansal K; Keyhani NO Environ Microbiol; 2023 Oct; 25(10):1894-1908. PubMed ID: 37190943 [TBL] [Abstract][Full Text] [Related]
66. Identification of the Achilles heels of the laurel wilt pathogen and its beetle vector. Zhou Y; Avery PB; Carrillo D; Duncan RH; Lukowsky A; Cave RD; Keyhani NO Appl Microbiol Biotechnol; 2018 Jul; 102(13):5673-5684. PubMed ID: 29717343 [TBL] [Abstract][Full Text] [Related]
67. Chemical and canine analysis as complimentary techniques for the identification of active odors of the invasive fungus, Raffaelea lauricola. Simon AG; Mills DK; Furton KG Talanta; 2017 Jun; 168():320-328. PubMed ID: 28391862 [TBL] [Abstract][Full Text] [Related]
68. Impact of Laurel Wilt, Caused by Raffaelea lauricola, on Leaf Gas Exchange and Xylem Sap Flow in Avocado, Persea americana. Ploetz RC; Schaffer B; Vargas AI; Konkol JL; Salvatierra J; Wideman R Phytopathology; 2015 Apr; 105(4):433-40. PubMed ID: 25496301 [TBL] [Abstract][Full Text] [Related]
69. Variation in manuka oil lure efficacy for capturing Xyleborus glabratus (Coleoptera: Curculionidae: Scolytinae), and cubeb oil as an alternative attractant. Hanula JL; Sullivan BT; Wakarchuk D Environ Entomol; 2013 Apr; 42(2):333-40. PubMed ID: 23575024 [TBL] [Abstract][Full Text] [Related]
70. The scent of a partner: ambrosia beetles are attracted to volatiles from their fungal symbionts. Hulcr J; Mann R; Stelinski LL J Chem Ecol; 2011 Dec; 37(12):1374-7. PubMed ID: 22161224 [TBL] [Abstract][Full Text] [Related]
71. Phytosanitation Methods Influence Posttreatment Colonization of Juglans nigra Logs by Pityophthorus juglandis (Coleoptera: Curculionidae: Scolytinae). Audley J; Mayfield AE; Myers SW; Taylor A; Klingeman WE J Econ Entomol; 2016 Feb; 109(1):213-21. PubMed ID: 26318005 [TBL] [Abstract][Full Text] [Related]
72. High efficiency transformation and mutant screening of the laurel wilt pathogen, Raffaelea lauricola. Zhou Y; Lu D; Joseph R; Li T; Keyhani NO Appl Microbiol Biotechnol; 2020 Sep; 104(17):7331-7343. PubMed ID: 32656617 [TBL] [Abstract][Full Text] [Related]
73. Molecular Detection of the Laurel Wilt Fungus, Raffaelea lauricola. Jeyaprakash A; Davison DA; Schubert TS Plant Dis; 2014 Apr; 98(4):559-564. PubMed ID: 30708736 [TBL] [Abstract][Full Text] [Related]
74. Influence of Trap Distance From a Source Population and Multiple Traps on Captures and Attack Densities of the Redbay Ambrosia Beetle (Coleoptera: Curculionidae: Scolytinae). Hanula JL; Mayfield AE; Reid LS; Horn S J Econ Entomol; 2016 Apr; 109(3):1196-1204. PubMed ID: 27053703 [TBL] [Abstract][Full Text] [Related]
75. Spore Acquisition and Survival of Ambrosia Beetles Associated with the Laurel Wilt Pathogen in Avocados after Exposure to Entomopathogenic Fungi. Avery PB; Bojorque V; Gámez C; Duncan RE; Carrillo D; Cave RD Insects; 2018 Apr; 9(2):. PubMed ID: 29693636 [TBL] [Abstract][Full Text] [Related]
76. New species of Ophiostomatales from Scolytinae and Platypodinae beetles in the Cape Floristic Region, including the discovery of the sexual state of Raffaelea. Musvuugwa T; de Beer ZW; Duong TA; Dreyer LL; Oberlander KC; Roets F Antonie Van Leeuwenhoek; 2015 Oct; 108(4):933-50. PubMed ID: 26275876 [TBL] [Abstract][Full Text] [Related]
77. α-Copaene is an attractant, synergistic with quercivorol, for improved detection of Euwallacea nr. fornicatus (Coleoptera: Curculionidae: Scolytinae). Kendra PE; Owens D; Montgomery WS; Narvaez TI; Bauchan GR; Schnell EQ; Tabanca N; Carrillo D PLoS One; 2017; 12(6):e0179416. PubMed ID: 28609448 [TBL] [Abstract][Full Text] [Related]
78. Impacts of chipping on surrogates for the longhorned beetle Anoplophora glabripennis (Coleoptera: Cerambycidae) in logs. Wang B; Mastro VC; McLane WH J Econ Entomol; 2000 Dec; 93(6):1832-6. PubMed ID: 11142319 [TBL] [Abstract][Full Text] [Related]
79. Unique Attributes of the Laurel Wilt Fungal Pathogen, Joseph R; Lasa M; Zhou Y; Keyhani NO Pathogens; 2021 Apr; 10(5):. PubMed ID: 33925553 [No Abstract] [Full Text] [Related]
80. Detection of laurel wilt disease in avocado using low altitude aerial imaging. de Castro AI; Ehsani R; Ploetz RC; Crane JH; Buchanon S PLoS One; 2015; 10(4):e0124642. PubMed ID: 25927209 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]