These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
282 related articles for article (PubMed ID: 24224468)
1. Oral delivery of double-stranded RNA in larvae of the yellow fever mosquito, Aedes aegypti: implications for pest mosquito control. Singh AD; Wong S; Ryan CP; Whyard S J Insect Sci; 2013; 13():69. PubMed ID: 24224468 [TBL] [Abstract][Full Text] [Related]
2. Larval application of sodium channel homologous dsRNA restores pyrethroid insecticide susceptibility in a resistant adult mosquito population. Bona AC; Chitolina RF; Fermino ML; de Castro Poncio L; Weiss A; Lima JB; Paldi N; Bernardes ES; Henen J; Maori E Parasit Vectors; 2016 Jul; 9(1):397. PubMed ID: 27416771 [TBL] [Abstract][Full Text] [Related]
3. Downregulation of female doublesex expression by oral-mediated RNA interference reduces number and fitness of Anopheles gambiae adult females. Taracena ML; Hunt CM; Benedict MQ; Pennington PM; Dotson EM Parasit Vectors; 2019 Apr; 12(1):170. PubMed ID: 30992032 [TBL] [Abstract][Full Text] [Related]
4. Development of CS-TPP-dsRNA nanoparticles to enhance RNAi efficiency in the yellow fever mosquito, Aedes aegypti. Dhandapani RK; Gurusamy D; Howell JL; Palli SR Sci Rep; 2019 Jun; 9(1):8775. PubMed ID: 31217512 [TBL] [Abstract][Full Text] [Related]
5. RNA interference-mediated knockdown of 3, 4-dihydroxyphenylacetaldehyde synthase affects larval development and adult survival in the mosquito Aedes aegypti. Chen J; Lu HR; Zhang L; Liao CH; Han Q Parasit Vectors; 2019 Jun; 12(1):311. PubMed ID: 31234914 [TBL] [Abstract][Full Text] [Related]
6. Chitosan/interfering RNA nanoparticle mediated gene silencing in disease vector mosquito larvae. Zhang X; Mysore K; Flannery E; Michel K; Severson DW; Zhu KY; Duman-Scheel M J Vis Exp; 2015 Mar; (97):. PubMed ID: 25867635 [TBL] [Abstract][Full Text] [Related]
7. Chitosan/double-stranded RNA nanoparticle-mediated RNA interference to silence chitin synthase genes through larval feeding in the African malaria mosquito (Anopheles gambiae). Zhang X; Zhang J; Zhu KY Insect Mol Biol; 2010 Oct; 19(5):683-93. PubMed ID: 20629775 [TBL] [Abstract][Full Text] [Related]
8. RNAi-mediated CHS-2 silencing affects the synthesis of chitin and the formation of the peritrophic membrane in the midgut of Aedes albopictus larvae. Zhang C; Ding Y; Zhou M; Tang Y; Chen R; Chen Y; Wen Y; Wang S Parasit Vectors; 2023 Aug; 16(1):259. PubMed ID: 37533099 [TBL] [Abstract][Full Text] [Related]
9. RNA Interference Is Enhanced by Knockdown of double-stranded RNases in the Yellow Fever Mosquito Giesbrecht D; Heschuk D; Wiens I; Boguski D; LaChance P; Whyard S Insects; 2020 May; 11(6):. PubMed ID: 32471283 [TBL] [Abstract][Full Text] [Related]
10. A novel paperclip double-stranded RNA structure demonstrates clathrin-independent uptake in the mosquito Aedes aegypti. Abbasi R; Heschuk D; Kim B; Whyard S Insect Biochem Mol Biol; 2020 Dec; 127():103492. PubMed ID: 33096213 [TBL] [Abstract][Full Text] [Related]
11. Chitosan, Carbon Quantum Dot, and Silica Nanoparticle Mediated dsRNA Delivery for Gene Silencing in Aedes aegypti: A Comparative Analysis. Das S; Debnath N; Cui Y; Unrine J; Palli SR ACS Appl Mater Interfaces; 2015 Sep; 7(35):19530-5. PubMed ID: 26291176 [TBL] [Abstract][Full Text] [Related]
12. Engineered Gut Symbiotic Bacterium-Mediated RNAi for Effective Control of Ding J; Cui C; Wang G; Wei G; Bai L; Li Y; Sun P; Dong L; Liu Z; Yun J; Li F; Li K; He L; Wang S Microbiol Spectr; 2023 Aug; 11(4):e0166623. PubMed ID: 37458601 [No Abstract] [Full Text] [Related]
13. Engineered chloroplast dsRNA silences cytochrome p450 monooxygenase, V-ATPase and chitin synthase genes in the insect gut and disrupts Helicoverpa zea larval development and pupation. Jin S; Singh ND; Li L; Zhang X; Daniell H Plant Biotechnol J; 2015 Apr; 13(3):435-46. PubMed ID: 25782349 [TBL] [Abstract][Full Text] [Related]
14. Topically applied AaeIAP1 double-stranded RNA kills female adults of Aedes aegypti. Pridgeon JW; Zhao L; Becnel JJ; Strickman DA; Clark GG; Linthicum KJ J Med Entomol; 2008 May; 45(3):414-20. PubMed ID: 18533434 [TBL] [Abstract][Full Text] [Related]
15. Development of an RNAi-based microalgal larvicide for the control of Aedes aegypti. Fei X; Zhang Y; Ding L; Xiao S; Xie X; Li Y; Deng X Parasit Vectors; 2021 Aug; 14(1):387. PubMed ID: 34362429 [TBL] [Abstract][Full Text] [Related]
17. Developmental control of a lepidopteran pest Spodoptera exigua by ingestion of bacteria expressing dsRNA of a non-midgut gene. Tian H; Peng H; Yao Q; Chen H; Xie Q; Tang B; Zhang W PLoS One; 2009 Jul; 4(7):e6225. PubMed ID: 19593438 [TBL] [Abstract][Full Text] [Related]
18. Delivery of chitosan/dsRNA nanoparticles for silencing of wing development vestigial (vg) gene in Aedes aegypti mosquitoes. Ramesh Kumar D; Saravana Kumar P; Gandhi MR; Al-Dhabi NA; Paulraj MG; Ignacimuthu S Int J Biol Macromol; 2016 May; 86():89-95. PubMed ID: 26794313 [TBL] [Abstract][Full Text] [Related]
19. Control of larval and egg development in Aedes aegypti with RNA interference against juvenile hormone acid methyl transferase. Van Ekert E; Powell CA; Shatters RG; Borovsky D J Insect Physiol; 2014 Nov; 70():143-50. PubMed ID: 25111689 [TBL] [Abstract][Full Text] [Related]
20. Expression of heat shock proteins (HSPs) in Aedes aegypti (L) and Aedes albopictus (Skuse) (Diptera: Culicidae) larvae in response to thermal stress. Sivan A; Shriram AN; Muruganandam N; Thamizhmani R Acta Trop; 2017 Mar; 167():121-127. PubMed ID: 28024869 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]