These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 24224887)

  • 1. Understanding the microscopic origin of gold nanoparticle anisotropic growth from molecular dynamics simulations.
    Meena SK; Sulpizi M
    Langmuir; 2013 Dec; 29(48):14954-61. PubMed ID: 24224887
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The implication of adsorption preferences of ions and surfactants on the shape control of gold nanoparticles: a microscopic, atomistic perspective.
    Meena SK; Meena C
    Nanoscale; 2021 Dec; 13(46):19549-19560. PubMed ID: 34806728
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Growth Mechanism of Gold Nanorods: the Effect of Tip-Surface Curvature As Revealed by Molecular Dynamics Simulations.
    da Silva JA; Netz PA; Meneghetti MR
    Langmuir; 2020 Jan; 36(1):257-263. PubMed ID: 31841340
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiscale simulations of ligand adsorption and exchange on gold nanoparticles.
    Gao HM; Liu H; Qian HJ; Jiao GS; Lu ZY
    Phys Chem Chem Phys; 2018 Jan; 20(3):1381-1394. PubMed ID: 29271449
    [TBL] [Abstract][Full Text] [Related]  

  • 5. New Aspects of the Gold Nanorod Formation Mechanism via Seed-Mediated Methods Revealed by Molecular Dynamics Simulations.
    da Silva JA; Meneghetti MR
    Langmuir; 2018 Jan; 34(1):366-375. PubMed ID: 29243933
    [TBL] [Abstract][Full Text] [Related]  

  • 6. From Gold Nanoseeds to Nanorods: The Microscopic Origin of the Anisotropic Growth.
    Meena SK; Sulpizi M
    Angew Chem Int Ed Engl; 2016 Sep; 55(39):11960-4. PubMed ID: 27560039
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On the origin of controlled anisotropic growth of monodisperse gold nanobipyramids.
    Meena SK; Lerouge F; Baldeck P; Andraud C; Garavelli M; Parola S; Sulpizi M; Rivalta I
    Nanoscale; 2021 Sep; 13(36):15292-15300. PubMed ID: 34486622
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Self-assembly and adsorption of cetyltrimethylammonium bromide and didodecyldimethylammonium bromide surfactants at the mica-water interface.
    Tsagkaropoulou G; Allen FJ; Clarke SM; Camp PJ
    Soft Matter; 2019 Oct; 15(41):8402-8411. PubMed ID: 31608355
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of halide ions in the anisotropic growth of gold nanoparticles: a microscopic, atomistic perspective.
    Meena SK; Celiksoy S; Schäfer P; Henkel A; Sönnichsen C; Sulpizi M
    Phys Chem Chem Phys; 2016 May; 18(19):13246-54. PubMed ID: 27118188
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gold nanorods as nanoadmicelles: 1-naphthol partitioning into a nanorod-bound surfactant bilayer.
    Alkilany AM; Frey RL; Ferry JL; Murphy CJ
    Langmuir; 2008 Sep; 24(18):10235-9. PubMed ID: 18700748
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chiral Plasmonic Nanochains via the Self-Assembly of Gold Nanorods and Helical Glutathione Oligomers Facilitated by Cetyltrimethylammonium Bromide Micelles.
    Lu J; Chang YX; Zhang NN; Wei Y; Li AJ; Tai J; Xue Y; Wang ZY; Yang Y; Zhao L; Lu ZY; Liu K
    ACS Nano; 2017 Apr; 11(4):3463-3475. PubMed ID: 28332821
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of ionic strength and surfactant concentration on electrostatic surfacial assembly of cetyltrimethylammonium bromide-capped gold nanorods on fully immersed glass.
    Ferhan AR; Guo L; Kim DH
    Langmuir; 2010 Jul; 26(14):12433-42. PubMed ID: 20557083
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cation exchange on the surface of gold nanorods with a polymerizable surfactant: polymerization, stability, and toxicity evaluation.
    Alkilany AM; Nagaria PK; Wyatt MD; Murphy CJ
    Langmuir; 2010 Jun; 26(12):9328-33. PubMed ID: 20356032
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interaction between silicates and ionic surfactants in dilute solution.
    Tjandra W; Yao J; Tam KC
    Langmuir; 2006 Feb; 22(4):1493-9. PubMed ID: 16460067
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cellular uptake and cytotoxicity of gold nanorods: molecular origin of cytotoxicity and surface effects.
    Alkilany AM; Nagaria PK; Hexel CR; Shaw TJ; Murphy CJ; Wyatt MD
    Small; 2009 Mar; 5(6):701-8. PubMed ID: 19226599
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Au(III)-CTAB reduction by ascorbic acid: preparation and characterization of gold nanoparticles.
    Khan Z; Singh T; Hussain JI; Hashmi AA
    Colloids Surf B Biointerfaces; 2013 Apr; 104():11-7. PubMed ID: 23298582
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of gold nanoparticles of varying size in improving the lipase activity within cationic reverse micelles.
    Maiti S; Das D; Shome A; Das PK
    Chemistry; 2010 Feb; 16(6):1941-50. PubMed ID: 20013961
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surfactant (bi)layers on gold nanorods.
    Gómez-Graña S; Hubert F; Testard F; Guerrero-Martínez A; Grillo I; Liz-Marzán LM; Spalla O
    Langmuir; 2012 Jan; 28(2):1453-9. PubMed ID: 22165910
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Template-assisted deposition of CTAB-functionalized gold nanoparticles with nanoscale resolution.
    Tinguely JC; Charron G; Lau-Truong S; Hohenau A; Grand J; Félidj N; Aubard J; Krenn JR
    J Colloid Interface Sci; 2013 Mar; 394():237-42. PubMed ID: 23352701
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Body- or tip-controlled reactivity of gold nanorods and their conversion to particles through other anisotropic structures.
    Sreeprasad TS; Samal AK; Pradeep T
    Langmuir; 2007 Aug; 23(18):9463-71. PubMed ID: 17665936
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.