These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 24224933)

  • 41. Classification of cytochrome P450 inhibitors with respect to binding free energy and pIC50 using common molecular descriptors.
    Dagliyan O; Kavakli IH; Turkay M
    J Chem Inf Model; 2009 Oct; 49(10):2403-11. PubMed ID: 19777996
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Prediction of sites of metabolism in a substrate molecule, instanced by carbamazepine oxidation by CYP3A4.
    Yuki H; Honma T; Hata M; Hoshino T
    Bioorg Med Chem; 2012 Jan; 20(2):775-83. PubMed ID: 22197672
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Oltipraz-mediated changes in aflatoxin B(1) biotransformation in rat liver: implications for human chemointervention.
    Buetler TM; Bammler TK; Hayes JD; Eaton DL
    Cancer Res; 1996 May; 56(10):2306-13. PubMed ID: 8625305
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Probing small-molecule binding to cytochrome P450 2D6 and 2C9: An in silico protocol for generating toxicity alerts.
    Rossato G; Ernst B; Smiesko M; Spreafico M; Vedani A
    ChemMedChem; 2010 Dec; 5(12):2088-101. PubMed ID: 21038340
    [TBL] [Abstract][Full Text] [Related]  

  • 45. In silico prediction of cytochrome P450-mediated site of metabolism (SOM).
    Liu X; Shen Q; Li J; Li S; Luo C; Zhu W; Luo X; Zheng M; Jiang H
    Protein Pept Lett; 2013 Mar; 20(3):279-89. PubMed ID: 22591483
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Assessment of cytochrome P450 fluorometric substrates with rainbow trout and killifish exposed to dexamethasone, pregnenolone-16alpha-carbonitrile, rifampicin, and beta-naphthoflavone.
    Smith EM; Wilson JY
    Aquat Toxicol; 2010 May; 97(4):324-33. PubMed ID: 20167382
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Binding mode prediction of cytochrome p450 and thymidine kinase protein-ligand complexes by consideration of water and rescoring in automated docking.
    de Graaf C; Pospisil P; Pos W; Folkers G; Vermeulen NP
    J Med Chem; 2005 Apr; 48(7):2308-18. PubMed ID: 15801824
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Classification of cytochrome p(450) activities using machine learning methods.
    Hammann F; Gutmann H; Baumann U; Helma C; Drewe J
    Mol Pharm; 2009; 6(6):1920-6. PubMed ID: 19813762
    [TBL] [Abstract][Full Text] [Related]  

  • 49. In silico site of metabolism prediction of cytochrome P450-mediated biotransformations.
    Tarcsay Á; Keseru GM
    Expert Opin Drug Metab Toxicol; 2011 Mar; 7(3):299-312. PubMed ID: 21291341
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Classification Models for Predicting Cytochrome P450 Enzyme-Substrate Selectivity.
    Zhang T; Dai H; Liu LA; Lewis DF; Wei D
    Mol Inform; 2012 Jan; 31(1):53-62. PubMed ID: 27478177
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Interaction of sulfaphenazole derivatives with human liver cytochromes P450 2C: molecular origin of the specific inhibitory effects of sulfaphenazole on CYP 2C9 and consequences for the substrate binding site topology of CYP 2C9.
    Mancy A; Dijols S; Poli S; Guengerich P; Mansuy D
    Biochemistry; 1996 Dec; 35(50):16205-12. PubMed ID: 8973193
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The contribution of atom accessibility to site of metabolism models for cytochromes P450.
    Rydberg P; Rostkowski M; Gloriam DE; Olsen L
    Mol Pharm; 2013 Apr; 10(4):1216-23. PubMed ID: 23339440
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Probing the world of cytochrome P450 enzymes.
    Frye RF
    Mol Interv; 2004 Jun; 4(3):157-62. PubMed ID: 15210869
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Comparative study on the use of docking and Bayesian categorization to predict ligand binding to nicotinic acetylcholine receptors (nAChRs) subtypes.
    Kombo DC; Bencherif M
    J Chem Inf Model; 2013 Dec; 53(12):3212-22. PubMed ID: 24328365
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Improved machine learning models for predicting selective compounds.
    Ning X; Walters M; Karypis G
    J Chem Inf Model; 2012 Jan; 52(1):38-50. PubMed ID: 22107358
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Metabolism of nitrosamines by cytochrome P-450 isozymes.
    Yang CS; Tu YY; Hong J; Patten C
    IARC Sci Publ; 1984; (57):423-8. PubMed ID: 6533032
    [TBL] [Abstract][Full Text] [Related]  

  • 57. PreMetabo: An in silico phase I and II drug metabolism prediction platform.
    Hwang S; Shin HK; Shin SE; Seo M; Jeon HN; Yim DE; Kim DH; No KT
    Drug Metab Pharmacokinet; 2020 Aug; 35(4):361-367. PubMed ID: 32616370
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Structure-based and multiple potential three-dimensional quantitative structure-activity relationship (SB-MP-3D-QSAR) for inhibitor design.
    Du QS; Gao J; Wei YT; Du LQ; Wang SQ; Huang RB
    J Chem Inf Model; 2012 Apr; 52(4):996-1004. PubMed ID: 22480344
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Prediction of binding modes for ligands in the cytochromes P450 and other heme-containing proteins.
    Kirton SB; Murray CW; Verdonk ML; Taylor RD
    Proteins; 2005 Mar; 58(4):836-44. PubMed ID: 15651036
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Structure-based virtual screening for novel ligands.
    Pitt WR; Calmiano MD; Kroeplien B; Taylor RD; Turner JP; King MA
    Methods Mol Biol; 2013; 1008():501-19. PubMed ID: 23729265
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.