BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

388 related articles for article (PubMed ID: 24224985)

  • 1. ABR obtained from time-efficient train stimuli for cisplatin ototoxicity monitoring.
    Dille MF; Ellingson RM; McMillan GP; Konrad-Martin D
    J Am Acad Audiol; 2013 Oct; 24(9):769-81. PubMed ID: 24224985
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development and validation of a cisplatin dose-ototoxicity model.
    Dille MF; Wilmington D; McMillan GP; Helt W; Fausti SA; Konrad-Martin D
    J Am Acad Audiol; 2012; 23(7):510-21. PubMed ID: 22992258
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of audiometric threshold shift criteria for ototoxicity monitoring.
    Konrad-Martin D; James KE; Gordon JS; Reavis KM; Phillips DS; Bratt GW; Fausti SA
    J Am Acad Audiol; 2010 May; 21(5):301-14; quiz 357. PubMed ID: 20569665
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Factors affecting sensitivity of distortion-product otoacoustic emissions to ototoxic hearing loss.
    Reavis KM; Phillips DS; Fausti SA; Gordon JS; Helt WJ; Wilmington D; Bratt GW; Konrad-Martin D
    Ear Hear; 2008 Dec; 29(6):875-93. PubMed ID: 18753950
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Distortion-product otoacoustic emission test performance for ototoxicity monitoring.
    Reavis KM; McMillan G; Austin D; Gallun F; Fausti SA; Gordon JS; Helt WJ; Konrad-Martin D
    Ear Hear; 2011 Feb; 32(1):61-74. PubMed ID: 20625302
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ototoxicity risk assessment combining distortion product otoacoustic emissions with a cisplatin dose model.
    Dille MF; McMillan GP; Reavis KM; Jacobs P; Fausti SA; Konrad-Martin D
    J Acoust Soc Am; 2010 Sep; 128(3):1163-74. PubMed ID: 20815453
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Accuracy of distortion-product otoacoustic emissions-based ototoxicity monitoring using various primary frequency step-sizes.
    McMillan GP; Konrad-Martin D; Dille MF
    Int J Audiol; 2012 Sep; 51(9):689-96. PubMed ID: 22676700
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evoked otoacoustic emissions--an approach for monitoring cisplatin induced ototoxicity in children.
    Stavroulaki P; Apostolopoulos N; Segas J; Tsakanikos M; Adamopoulos G
    Int J Pediatr Otorhinolaryngol; 2001 May; 59(1):47-57. PubMed ID: 11376818
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Auditory function in normal-hearing, noise-exposed human ears.
    Stamper GC; Johnson TA
    Ear Hear; 2015; 36(2):172-84. PubMed ID: 25350405
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ABR evaluation of ototoxicity in cancer patients receiving cisplatin or carboplatin.
    De Lauretis A; De Capua B; Barbieri MT; Bellussi L; Passàli D
    Scand Audiol; 1999; 28(3):139-43. PubMed ID: 10489862
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessment of cisplatin-induced ototoxicity using derived-band ABRs.
    Coupland SG; Ponton CW; Eggermont JJ; Bowen TJ; Grant RM
    Int J Pediatr Otorhinolaryngol; 1991 Oct; 22(3):237-48. PubMed ID: 1752735
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predicting the degree of hearing loss using click auditory brainstem response in babies referred from newborn hearing screening.
    Baldwin M; Watkin P
    Ear Hear; 2013; 34(3):361-9. PubMed ID: 23340456
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of noise exposure on young adults with normal audiograms I: Electrophysiology.
    Prendergast G; Guest H; Munro KJ; Kluk K; Léger A; Hall DA; Heinz MG; Plack CJ
    Hear Res; 2017 Feb; 344():68-81. PubMed ID: 27816499
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Using a combination of click- and tone burst-evoked auditory brain stem response measurements to estimate pure-tone thresholds.
    Gorga MP; Johnson TA; Kaminski JR; Beauchaine KL; Garner CA; Neely ST
    Ear Hear; 2006 Feb; 27(1):60-74. PubMed ID: 16446565
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cisplatin-induced ototoxicity: effect of intratympanic dexamethasone injections.
    Hill GW; Morest DK; Parham K
    Otol Neurotol; 2008 Oct; 29(7):1005-11. PubMed ID: 18716567
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Early detection of ototoxicity using high-frequency, tone-burst-evoked auditory brainstem responses.
    Fausti SA; Frey RH; Henry JA; Olson DJ; Schaffer HI
    J Am Acad Audiol; 1992 Nov; 3(6):397-404. PubMed ID: 1486202
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Relationship between pure tone audiometry and tone burst auditory brainstem response at low frequencies gated with Blackman window.
    Canale A; Dagna F; Lacilla M; Piumetto E; Albera R
    Eur Arch Otorhinolaryngol; 2012 Mar; 269(3):781-5. PubMed ID: 21814732
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proposed comprehensive ototoxicity monitoring program for VA healthcare (COMP-VA).
    Konrad-Martin D; Reavis KM; McMillan G; Helt WJ; Dille M
    J Rehabil Res Dev; 2014; 51(1):81-100. PubMed ID: 24805896
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimizing Parameters for Using the Parallel Auditory Brainstem Response to Quickly Estimate Hearing Thresholds.
    Polonenko MJ; Maddox RK
    Ear Hear; 2022; 43(2):646-658. PubMed ID: 34593686
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fixed-Level Frequency Threshold Testing for Ototoxicity Monitoring.
    Rieke CC; Clavier OH; Allen LV; Anderson AP; Brooks CA; Fellows AM; Brungart DS; Buckey JC
    Ear Hear; 2017; 38(6):e369-e375. PubMed ID: 28362673
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.