BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 24225024)

  • 21. Ubiquitination of APOBEC3 proteins by the Vif-Cullin5-ElonginB-ElonginC complex.
    Shirakawa K; Takaori-Kondo A; Kobayashi M; Tomonaga M; Izumi T; Fukunaga K; Sasada A; Abudu A; Miyauchi Y; Akari H; Iwai K; Uchiyama T
    Virology; 2006 Jan; 344(2):263-6. PubMed ID: 16303161
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Structural basis of intersubunit recognition in elongin BC-cullin 5-SOCS box ubiquitin-protein ligase complexes.
    Kim YK; Kwak MJ; Ku B; Suh HY; Joo K; Lee J; Jung JU; Oh BH
    Acta Crystallogr D Biol Crystallogr; 2013 Aug; 69(Pt 8):1587-97. PubMed ID: 23897481
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Dissection of the HIV Vif interaction with human E3 ubiquitin ligase.
    Wolfe LS; Stanley BJ; Liu C; Eliason WK; Xiong Y
    J Virol; 2010 Jul; 84(14):7135-9. PubMed ID: 20463065
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A zinc-binding region in Vif binds Cul5 and determines cullin selection.
    Mehle A; Thomas ER; Rajendran KS; Gabuzda D
    J Biol Chem; 2006 Jun; 281(25):17259-17265. PubMed ID: 16636053
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Characterization of conserved motifs in HIV-1 Vif required for APOBEC3G and APOBEC3F interaction.
    He Z; Zhang W; Chen G; Xu R; Yu XF
    J Mol Biol; 2008 Sep; 381(4):1000-11. PubMed ID: 18619467
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Characterization of a novel Cullin5 binding domain in HIV-1 Vif.
    Xiao Z; Xiong Y; Zhang W; Tan L; Ehrlich E; Guo D; Yu XF
    J Mol Biol; 2007 Oct; 373(3):541-50. PubMed ID: 17869271
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Crystal structure of the SOCS2-elongin C-elongin B complex defines a prototypical SOCS box ubiquitin ligase.
    Bullock AN; Debreczeni JE; Edwards AM; Sundström M; Knapp S
    Proc Natl Acad Sci U S A; 2006 May; 103(20):7637-42. PubMed ID: 16675548
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Design, synthesis and biological evaluation of indolizine derivatives as HIV-1 VIF-ElonginC interaction inhibitors.
    Huang W; Zuo T; Jin H; Liu Z; Yang Z; Yu X; Zhang L; Zhang L
    Mol Divers; 2013 May; 17(2):221-43. PubMed ID: 23378232
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Structural disorder in the HIV-1 Vif protein and interaction-dependent gain of structure.
    Reingewertz TH; Shalev DE; Friedler A
    Protein Pept Lett; 2010 Aug; 17(8):988-98. PubMed ID: 20450485
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Dispersed and conserved hydrophobic residues of HIV-1 Vif are essential for CBFβ recruitment and A3G suppression.
    Zhou X; Han X; Zhao K; Du J; Evans SL; Wang H; Li P; Zheng W; Rui Y; Kang J; Yu XF
    J Virol; 2014 Mar; 88(5):2555-63. PubMed ID: 24352440
    [TBL] [Abstract][Full Text] [Related]  

  • 31. HIV-1 Promotes the Degradation of Components of the Type 1 IFN JAK/STAT Pathway and Blocks Anti-viral ISG Induction.
    Gargan S; Ahmed S; Mahony R; Bannan C; Napoletano S; O'Farrelly C; Borrow P; Bergin C; Stevenson NJ
    EBioMedicine; 2018 Apr; 30():203-216. PubMed ID: 29580840
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Identification of a critical T(Q/D/E)x5ADx2(I/L) motif from primate lentivirus Vif proteins that regulate APOBEC3G and APOBEC3F neutralizing activity.
    Dang Y; Wang X; York IA; Zheng YH
    J Virol; 2010 Sep; 84(17):8561-70. PubMed ID: 20592083
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Biophysical studies on interactions and assembly of full-size E3 ubiquitin ligase: suppressor of cytokine signaling 2 (SOCS2)-elongin BC-cullin 5-ring box protein 2 (RBX2).
    Bulatov E; Martin EM; Chatterjee S; Knebel A; Shimamura S; Konijnenberg A; Johnson C; Zinn N; Grandi P; Sobott F; Ciulli A
    J Biol Chem; 2015 Feb; 290(7):4178-91. PubMed ID: 25505247
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cellular requirements for bovine immunodeficiency virus Vif-mediated inactivation of bovine APOBEC3 proteins.
    Zhang W; Wang H; Li Z; Liu X; Liu G; Harris RS; Yu XF
    J Virol; 2014 Nov; 88(21):12528-40. PubMed ID: 25142583
    [TBL] [Abstract][Full Text] [Related]  

  • 35. T-cell differentiation factor CBF-β regulates HIV-1 Vif-mediated evasion of host restriction.
    Zhang W; Du J; Evans SL; Yu Y; Yu XF
    Nature; 2011 Dec; 481(7381):376-9. PubMed ID: 22190036
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Requirement of HIV-1 Vif C-terminus for Vif-CBF-β interaction and assembly of CUL5-containing E3 ligase.
    Wang H; Lv G; Zhou X; Li Z; Liu X; Yu XF; Zhang W
    BMC Microbiol; 2014 Nov; 14():290. PubMed ID: 25424878
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Conformational Dynamics of the HIV-Vif Protein Complex.
    Ball KA; Chan LM; Stanley DJ; Tierney E; Thapa S; Ta HM; Burton L; Binning JM; Jacobson MP; Gross JD
    Biophys J; 2019 Apr; 116(8):1432-1445. PubMed ID: 30961890
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Structural insights for HIV-1 therapeutic strategies targeting Vif.
    Salter JD; Morales GA; Smith HC
    Trends Biochem Sci; 2014 Sep; 39(9):373-80. PubMed ID: 25124760
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The C-terminal domain of the HIV-1 Vif protein is natively unfolded in its unbound state.
    Reingewertz TH; Benyamini H; Lebendiker M; Shalev DE; Friedler A
    Protein Eng Des Sel; 2009 May; 22(5):281-7. PubMed ID: 19218568
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Core-binding factor β increases the affinity between human Cullin 5 and HIV-1 Vif within an E3 ligase complex.
    Salter JD; Lippa GM; Belashov IA; Wedekind JE
    Biochemistry; 2012 Nov; 51(44):8702-4. PubMed ID: 23098073
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.