BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 24225068)

  • 1. Characterization of the impact of catheter-tissue contact force in lesion formation during cavo-tricuspid isthmus ablation in an experimental swine model.
    Matía Francés R; Hernández Madrid A; Delgado A; Carrizo L; Pindado C; Moro Serrano C; Zamorano Gómez JL
    Europace; 2014 Nov; 16(11):1679-83. PubMed ID: 24225068
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cavo-tricuspid isthmus radiofrequency ablation using a novel remote navigation catheter system in patients with typical atrial flutter.
    López-Gil M; Salgado R; Merino JL; Datino T; Figueroa J; Arenal A; Mejía E; Salguero R; Fontenla A; Arribas F
    Europace; 2014 Apr; 16(4):558-62. PubMed ID: 24058180
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mapping and ablation of the pulmonary veins and cavo-tricuspid isthmus with a magnetic resonance imaging-compatible externally irrigated ablation catheter and integrated electrophysiology system.
    Ganesan AN; Selvanayagam JB; Mahajan R; Grover S; Nayyar S; Brooks AG; Finnie J; Sunnarborg D; Lloyd T; Chakrabarty A; Abed HS; Sanders P
    Circ Arrhythm Electrophysiol; 2012 Dec; 5(6):1136-42. PubMed ID: 23074322
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microwave linear ablation of the isthmus between the inferior vena cava and tricuspid annulus.
    Liem LB; Mead RH
    Pacing Clin Electrophysiol; 1998 Nov; 21(11 Pt 1):2079-86. PubMed ID: 9826860
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Lesions produced by radiofrequency ablation of the cavotricuspid isthmus in an experimental model].
    Cabeza P; Hernández Madrid A; Palmeiro A; Rebollo JM; Peña G; Escobar C; Bueno MG; Correa C; Chércoles A; Marín I; Bernal E; Peng J; Nannini S; Limón L; Viana M; Moro C
    Rev Esp Cardiol; 2003 Oct; 56(10):963-70. PubMed ID: 14563290
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Superiority of gold versus platinum irrigated tip catheter ablation of the pulmonary veins and the cavotricuspid isthmus: a randomized study comparing tip temperatures and cooling flow requirements.
    Linhart M; Liberman I; Schrickel JW; Mittmann-Braun EL; Andrié R; Stöckigt F; Kreuz J; Nickenig G; Lickfett LM
    J Cardiovasc Electrophysiol; 2012 Jul; 23(7):717-21. PubMed ID: 22429859
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Use of a novel irrigated balloon catheter to generate continuous right atrial lesions by radiofrequency ablation.
    Watanabe I; Min N; Okumura Y; Kofune M; Ashino S; Ohkubo K; Nakai T; Kunimoto S; Kasamaki Y; Hirayama A
    Int Heart J; 2009 May; 50(3):365-76. PubMed ID: 19506340
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Importance of catheter contact force during irrigated radiofrequency ablation: evaluation in a porcine ex vivo model using a force-sensing catheter.
    Thiagalingam A; D'Avila A; Foley L; Guerrero JL; Lambert H; Leo G; Ruskin JN; Reddy VY
    J Cardiovasc Electrophysiol; 2010 Jul; 21(7):806-11. PubMed ID: 20132400
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Safety and efficacy of delivering high-power short-duration radiofrequency ablation lesions utilizing a novel temperature sensing technology.
    Rozen G; Ptaszek LM; Zilberman I; Douglas V; Heist EK; Beeckler C; Altmann A; Ruskin JN; Govari A; Mansour M
    Europace; 2018 Nov; 20(FI_3):f444-f450. PubMed ID: 29579196
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predictability of lesion durability for AF ablation using phased radiofrequency: Power, temperature, and duration impact creation of transmural lesions.
    Hocini M; Condie C; Stewart MT; Kirchhof N; Foell JD
    Heart Rhythm; 2016 Jul; 13(7):1521-6. PubMed ID: 26921762
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prospective evaluation of a novel catheter equipped with mini electrodes on a 10-mm tip for cavotricuspid isthmus ablation - The efficacy of a mini electrode guided ablation.
    Takagi T; Miyazaki S; Niida T; Kajiyama T; Watanabe T; Kusa S; Nakamura H; Taniguchi H; Hachiya H; Iesaka Y; Isobe M; Hirao K
    Int J Cardiol; 2017 Aug; 240():203-207. PubMed ID: 28372867
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lesion Index Titration Using Contact-Force Technology Enables Safe and Effective Radiofrequency Lesion Creation at the Root of the Aorta and Pulmonary Artery.
    Alfonso-Almazán JM; Quintanilla JG; García-Torrent MJ; Laguna-Castro S; Rodríguez-Bobada C; González P; González-Ferrer JJ; Salinas P; Cañadas-Godoy V; Moreno J; Borrego-Bernabé L; Pérez-Castellano N; Jalife J; Perez-Villacastín J; Filgueiras-Rama D
    Circ Arrhythm Electrophysiol; 2019 Mar; 12(3):e007080. PubMed ID: 30879334
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Catheter inversion: a technique to complete isthmus ablation and cure atrial flutter.
    Sporton SC; Davies DW; Earley MJ; Markides V; Nathan AW; Schilling RJ
    Pacing Clin Electrophysiol; 2004 Jun; 27(6 Pt 1):775-8. PubMed ID: 15189533
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of ventricular radiofrequency lesions in sheep using standard irrigated tip catheter versus catheter ablation enabling direct visualization.
    Sacher F; Derval N; Jadidi A; Scherr D; Hocini M; Haissaguerre M; Dos Santos P; Jais P
    J Cardiovasc Electrophysiol; 2012 Aug; 23(8):869-73. PubMed ID: 22554117
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cavotricuspid isthmus ablation guided by real-time magnetic resonance imaging.
    Piorkowski C; Grothoff M; Gaspar T; Eitel C; Sommer P; Huo Y; John S; Gutberlet M; Hindricks G
    Circ Arrhythm Electrophysiol; 2013 Feb; 6(1):e7-10. PubMed ID: 23424226
    [No Abstract]   [Full Text] [Related]  

  • 16. Temporary occlusion of the great cardiac vein and coronary sinus to facilitate radiofrequency catheter ablation of the mitral isthmus.
    D'Avila A; Thiagalingam A; Foley L; Fox M; Ruskin JN; Reddy VY
    J Cardiovasc Electrophysiol; 2008 Jun; 19(6):645-50. PubMed ID: 18462328
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrogram-gated radiofrequency ablations with duty cycle power delivery negate effects of ablation catheter motion.
    Chik WW; Barry MA; Pouliopoulos J; Byth K; Midekin C; Bhaskaran A; Sivagangabalan G; Thomas SP; Ross DL; McEwan A; Kovoor P; Thiagalingam A
    Circ Arrhythm Electrophysiol; 2014 Oct; 7(5):920-8. PubMed ID: 25114063
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of open-irrigated radiofrequency ablation catheter design on lesion formation and complications: in vitro comparison of 6 different devices.
    Guerra JM; Jorge E; Raga S; Gálvez-Montón C; Alonso-Martín C; Rodríguez-Font E; Cinca J; Viñolas X
    J Cardiovasc Electrophysiol; 2013 Oct; 24(10):1157-62. PubMed ID: 23718822
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Temperature-controlled radiofrequency catheter ablation with a 10-mm tip electrode creates larger lesions without charring in the porcine heart.
    Anfinsen OG; Aass H; Kongsgaard E; Foerster A; Scott H; Amlie JP
    J Interv Card Electrophysiol; 1999 Dec; 3(4):343-51. PubMed ID: 10525251
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficacy of a cooled bipolar epicardial radiofrequency ablation probe for creating transmural myocardial lesions.
    Wood MA; Ellenbogen AL; Pathak V; Ellenbogen KA; Kasarajan V
    J Thorac Cardiovasc Surg; 2010 Feb; 139(2):453-8. PubMed ID: 19748103
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.