These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
461 related articles for article (PubMed ID: 24225109)
1. Production of propionic acid-enriched volatile fatty acids from co-fermentation liquid of sewage sludge and food waste using Propionibacterium acidipropionici. Li X; Mu H; Chen Y; Zheng X; Luo J; Zhao S Water Sci Technol; 2013; 68(9):2061-6. PubMed ID: 24225109 [TBL] [Abstract][Full Text] [Related]
2. Enhancement of propionic acid fraction in volatile fatty acids produced from sludge fermentation by the use of food waste and Propionibacterium acidipropionici. Chen Y; Li X; Zheng X; Wang D Water Res; 2013 Feb; 47(2):615-22. PubMed ID: 23219005 [TBL] [Abstract][Full Text] [Related]
3. Improved production of propionic acid driven by hydrolyzed liquid containing high concentration of l-lactic acid from co-fermentation of food waste and sludge. Li X; Zhang W; Ma L; Lai S; Zhao S; Chen Y; Liu Y Bioresour Technol; 2016 Nov; 220():523-529. PubMed ID: 27614154 [TBL] [Abstract][Full Text] [Related]
4. Upflow anaerobic sludge blanket reactor--a review. Bal AS; Dhagat NN Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675 [TBL] [Abstract][Full Text] [Related]
5. Reconsideration of anaerobic fermentation from excess sludge at pH 10.0 as an eco-friendly process. Yu GH; He PJ; Shao LM J Hazard Mater; 2010 Mar; 175(1-3):510-7. PubMed ID: 19896767 [TBL] [Abstract][Full Text] [Related]
6. Volatile fatty acid production from mesophilic acidogenic fermentation of organic fraction of municipal solid waste and food waste under acidic and alkaline pH. Cheah YK; Vidal-Antich C; Dosta J; Mata-Álvarez J Environ Sci Pollut Res Int; 2019 Dec; 26(35):35509-35522. PubMed ID: 31111388 [TBL] [Abstract][Full Text] [Related]
7. Influences of volatile solid concentration, temperature and solid retention time for the hydrolysis of waste activated sludge to recover volatile fatty acids. Xiong H; Chen J; Wang H; Shi H Bioresour Technol; 2012 Sep; 119():285-92. PubMed ID: 22750494 [TBL] [Abstract][Full Text] [Related]
8. Assessing the potential of waste activated sludge and food waste co-fermentation for carboxylic acids production. Vidal-Antich C; Perez-Esteban N; Astals S; Peces M; Mata-Alvarez J; Dosta J Sci Total Environ; 2021 Feb; 757():143763. PubMed ID: 33288258 [TBL] [Abstract][Full Text] [Related]
9. Kinetic modelling and synergistic impact evaluation for the anaerobic co-digestion of distillers' grains and food waste by ethanol pre-fermentation. Yu M; Gao M; Wang L; Ren Y; Wu C; Ma H; Wang Q Environ Sci Pollut Res Int; 2018 Oct; 25(30):30281-30291. PubMed ID: 30155637 [TBL] [Abstract][Full Text] [Related]
10. Anaerobic fermentation of organic solid wastes: volatile fatty acid production and separation. Yesil H; Tugtas AE; Bayrakdar A; Calli B Water Sci Technol; 2014; 69(10):2132-8. PubMed ID: 24845331 [TBL] [Abstract][Full Text] [Related]
11. Hydrogen and methane production by co-digestion of waste activated sludge and food waste in the two-stage fermentation process: substrate conversion and energy yield. Liu X; Li R; Ji M; Han L Bioresour Technol; 2013 Oct; 146():317-323. PubMed ID: 23948269 [TBL] [Abstract][Full Text] [Related]
12. Ultrasonic enhancement of waste activated sludge hydrolysis and volatile fatty acids accumulation at pH 10.0. Yan Y; Feng L; Zhang C; Wisniewski C; Zhou Q Water Res; 2010 Jun; 44(11):3329-36. PubMed ID: 20371095 [TBL] [Abstract][Full Text] [Related]
13. VFA generation from waste activated sludge: effect of temperature and mixing. Yuan Q; Sparling R; Oleszkiewicz JA Chemosphere; 2011 Jan; 82(4):603-7. PubMed ID: 21075416 [TBL] [Abstract][Full Text] [Related]
14. Effect of enzymatic pretreatment on solubilization and volatile fatty acid production in fermentation of food waste. Kim HJ; Choi YG; Kim GD; Kim SH; Chung TH Water Sci Technol; 2005; 52(10-11):51-9. PubMed ID: 16459776 [TBL] [Abstract][Full Text] [Related]
15. The one-stage autothermal thermophilic aerobic digestion for sewage sludge treatment: stabilization process and mechanism. Liu S; Zhu N; Li LY Bioresour Technol; 2012 Jan; 104():266-73. PubMed ID: 22153290 [TBL] [Abstract][Full Text] [Related]
16. The inhibitory effect of thiosulfinate on volatile fatty acid and hydrogen production from anaerobic co-fermentation of food waste and waste activated sludge. Tao Z; Yang Q; Yao F; Huang X; Wu Y; Du M; Chen S; Liu X; Li X; Wang D Bioresour Technol; 2020 Feb; 297():122428. PubMed ID: 31786038 [TBL] [Abstract][Full Text] [Related]
17. Continuous liquid fermentation of pretreated waste activated sludge for high rate volatile fatty acids production and online nutrients recovery. Zhang L; Liu H; Zheng Z; Ma H; Yang M; Liu H Bioresour Technol; 2018 Feb; 249():962-968. PubMed ID: 29145123 [TBL] [Abstract][Full Text] [Related]
18. Effects of different temperatures and pH values on volatile fatty acids production during codigestion of food waste and thermal-hydrolysed sewage sludge and subsequent volatile fatty acids for polyhydroxyalkanoates production. Gong X; Wu M; Jiang Y; Wang H Bioresour Technol; 2021 Aug; 333():125149. PubMed ID: 33901914 [TBL] [Abstract][Full Text] [Related]
19. Enhancement of volatile fatty acid production by co-fermentation of food waste and excess sludge without pH control: The mechanism and microbial community analyses. Wu QL; Guo WQ; Zheng HS; Luo HC; Feng XC; Yin RL; Ren NQ Bioresour Technol; 2016 Sep; 216():653-60. PubMed ID: 27289056 [TBL] [Abstract][Full Text] [Related]
20. Hydrolysis-acidogenesis of food waste in solid-liquid-separating continuous stirred tank reactor (SLS-CSTR) for volatile organic acid production. Karthikeyan OP; Selvam A; Wong JW Bioresour Technol; 2016 Jan; 200():366-73. PubMed ID: 26512860 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]