These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Pathways of microbial metabolism of parathion. Munnecke DM; Hsieh DP Appl Environ Microbiol; 1976 Jan; 31(1):63-9. PubMed ID: 8005 [TBL] [Abstract][Full Text] [Related]
3. Microbial decontamination of parathion and p-nitrophenol in aqueous media. Munnecke DM; Hsieh DP Appl Microbiol; 1974 Aug; 28(2):212-7. PubMed ID: 4853209 [TBL] [Abstract][Full Text] [Related]
4. Parathion utilization by bacterial symbionts in a chemostat. Daughton CG; Hsieh DP Appl Environ Microbiol; 1977 Aug; 34(2):175-84. PubMed ID: 410368 [TBL] [Abstract][Full Text] [Related]
5. Degradation of parathion by bacteria isolated from flooded soil. Siddaramappa R; Rajaram KP; Sethunathan N Appl Microbiol; 1973 Dec; 26(6):846-9. PubMed ID: 4767293 [TBL] [Abstract][Full Text] [Related]
6. Bacterial metabolism of para- and meta-xylene: oxidation of a methyl substituent. Davey JF; Gibson DT J Bacteriol; 1974 Sep; 119(3):923-9. PubMed ID: 4850727 [TBL] [Abstract][Full Text] [Related]
7. Isolation of a methyl parathion-degrading Pseudomonas sp. that possesses DNA homologous to the opd gene from a Flavobacterium sp. Chaudhry GR; Ali AN; Wheeler WB Appl Environ Microbiol; 1988 Feb; 54(2):288-93. PubMed ID: 3355128 [TBL] [Abstract][Full Text] [Related]
8. Reductive transformation of parathion and methyl parathion by Bacillus sp. Yang C; Dong M; Yuan Y; Huang Y; Guo X; Qiao C Biotechnol Lett; 2007 Mar; 29(3):487-93. PubMed ID: 17225067 [TBL] [Abstract][Full Text] [Related]
9. Removal of xylene by a mixed culture of Pseudomonas sp. NBM21 and Rhodococcus sp. BTO62 in biofilter. Jeong E; Hirai M; Shoda M J Biosci Bioeng; 2009 Aug; 108(2):136-41. PubMed ID: 19619861 [TBL] [Abstract][Full Text] [Related]
10. Metabolic engineering of Pseudomonas putida for the utilization of parathion as a carbon and energy source. Walker AW; Keasling JD Biotechnol Bioeng; 2002 Jun; 78(7):715-21. PubMed ID: 12001163 [TBL] [Abstract][Full Text] [Related]
11. Genetic and phenotypic diversity of parathion-degrading bacteria isolated from rice paddy soils. Choi MK; Kim KD; Ahn KM; Shin DH; Hwang JH; Seong CN; Ka JO J Microbiol Biotechnol; 2009 Dec; 19(12):1679-87. PubMed ID: 20075637 [TBL] [Abstract][Full Text] [Related]
12. Biodegradation of xylene and butyl acetate using an aqueous-silicon oil two-phase system. Gardin H; Lebeault JM; Pauss A Biodegradation; 1999 Jun; 10(3):193-200. PubMed ID: 10492887 [TBL] [Abstract][Full Text] [Related]
13. Degradation of parathion in culture by microorganisms found in cranberry bogs. Gorder GW; Lichtenstein EP Can J Microbiol; 1980 Apr; 26(4):475-81. PubMed ID: 7378942 [TBL] [Abstract][Full Text] [Related]
14. The degradation of parathion and DDT in aqueous systems containing organic additives. Sharom MS; Miles JR J Environ Sci Health B; 1981; 16(6):703-11. PubMed ID: 7338594 [TBL] [Abstract][Full Text] [Related]
15. [Peripheral metabolism of isomeric xylenes by Pseudomonas aeruginosa]. Skriabin GK; Ganbarov KhG; Golovleva LA; Chervin II; Adanin VM Mikrobiologiia; 1976; 45(6):951-4. PubMed ID: 827670 [TBL] [Abstract][Full Text] [Related]
16. The use of a solid adsorber resin for enrichment of bacteria with toxic substrates and to identify metabolites: degradation of naphthalene, O-, and m-xylene by sulfate-reducing bacteria. Morasch B; Annweiler E; Warthmann RJ; Meckenstock RU J Microbiol Methods; 2001 Mar; 44(2):183-91. PubMed ID: 11165347 [TBL] [Abstract][Full Text] [Related]
17. Initial reactions in the anaerobic oxidation of toluene and m-xylene by denitrifying bacteria. Seyfried B; Glod G; Schocher R; Tschech A; Zeyer J Appl Environ Microbiol; 1994 Nov; 60(11):4047-52. PubMed ID: 7993091 [TBL] [Abstract][Full Text] [Related]
18. Common induction and regulation of biphenyl, xylene/toluene, and salicylate catabolism in Pseudomonas paucimobilis. Furukawa K; Simon JR; Chakrabarty AM J Bacteriol; 1983 Jun; 154(3):1356-62. PubMed ID: 6343352 [TBL] [Abstract][Full Text] [Related]
19. Carbon and hydrogen isotope analysis of parathion for characterizing its natural attenuation by hydrolysis at a contaminated site. Wu L; Verma D; Bondgaard M; Melvej A; Vogt C; Subudhi S; Richnow HH Water Res; 2018 Oct; 143():146-154. PubMed ID: 29945030 [TBL] [Abstract][Full Text] [Related]
20. Metabolic diversity of aromatic hydrocarbon-degrading bacteria from a petroleum-contaminated aquifer. Mikesell MD; Kukor JJ; Olsen RH Biodegradation; 1993-1994; 4(4):249-59. PubMed ID: 7764922 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]