These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 24225528)

  • 1. Ultralow field NMR spectrometer with an atomic magnetometer near room temperature.
    Liu G; Li X; Sun X; Feng J; Ye C; Zhou X
    J Magn Reson; 2013 Dec; 237():158-163. PubMed ID: 24225528
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In-situ Overhauser-enhanced nuclear magnetic resonance at less than 1 μT using an atomic magnetometer.
    Lee HJ; Lee SJ; Shim JH; Moon HS; Kim K
    J Magn Reson; 2019 Mar; 300():149-152. PubMed ID: 30776565
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Invited Review Article: Instrumentation for nuclear magnetic resonance in zero and ultralow magnetic field.
    Tayler MCD; Theis T; Sjolander TF; Blanchard JW; Kentner A; Pustelny S; Pines A; Budker D
    Rev Sci Instrum; 2017 Sep; 88(9):091101. PubMed ID: 28964224
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detection of ultra-low field NMR signal with a commercial QuSpin single-beam atomic magnetometer.
    Savukov I; Kim YJ; Schultz G
    J Magn Reson; 2020 Aug; 317():106780. PubMed ID: 32688163
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nuclear magnetic resonance at millitesla fields using a zero-field spectrometer.
    Tayler MCD; Sjolander TF; Pines A; Budker D
    J Magn Reson; 2016 Sep; 270():35-39. PubMed ID: 27391123
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The influence of modulated magnetic field on light absorption in SERF atomic magnetometer.
    Yin Y; Zhou B; Wang Y; Ye M; Ning X; Han B; Fang J
    Rev Sci Instrum; 2022 Jan; 93(1):013001. PubMed ID: 35104997
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Relaxation behavior study of ultrasmall superparamagnetic iron oxide nanoparticles at ultralow and ultrahigh magnetic fields.
    Wang W; Dong H; Pacheco V; Willbold D; Zhang Y; Offenhaeusser A; Hartmann R; Weirich TE; Ma P; Krause HJ; Gu Z
    J Phys Chem B; 2011 Dec; 115(49):14789-93. PubMed ID: 21972868
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Zero-field remote detection of NMR with a microfabricated atomic magnetometer.
    Ledbetter MP; Savukov IM; Budker D; Shah V; Knappe S; Kitching J; Michalak DJ; Xu S; Pines A
    Proc Natl Acad Sci U S A; 2008 Feb; 105(7):2286-90. PubMed ID: 18287080
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Zero- to Ultralow-Field NMR Spectroscopy of Small Biomolecules.
    Put P; Pustelny S; Budker D; Druga E; Sjolander TF; Pines A; Barskiy DA
    Anal Chem; 2021 Feb; 93(6):3226-3232. PubMed ID: 33448215
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Measurement Sensitivity Improvement of All-Optical Atomic Spin Magnetometer by Suppressing Noises.
    Chen X; Zhang H; Zou S
    Sensors (Basel); 2016 Jun; 16(6):. PubMed ID: 27322272
    [TBL] [Abstract][Full Text] [Related]  

  • 11. NMR relaxation in porous materials at zero and ultralow magnetic fields.
    Tayler MCD; Ward-Williams J; Gladden LF
    J Magn Reson; 2018 Dec; 297():1-8. PubMed ID: 30316016
    [TBL] [Abstract][Full Text] [Related]  

  • 12. NMR detection with an atomic magnetometer.
    Savukov IM; Romalis MV
    Phys Rev Lett; 2005 Apr; 94(12):123001. PubMed ID: 15903914
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Zero- to ultralow-field nuclear magnetic resonance J-spectroscopy with commercial atomic magnetometers.
    Blanchard JW; Wu T; Eills J; Hu Y; Budker D
    J Magn Reson; 2020 May; 314():106723. PubMed ID: 32298993
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-sensitivity atomic magnetometer unaffected by spin-exchange relaxation.
    Allred JC; Lyman RN; Kornack TW; Romalis MV
    Phys Rev Lett; 2002 Sep; 89(13):130801. PubMed ID: 12225013
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Continuous reading SQUID magnetometer and its applications.
    Janů Z; Soukup F
    Rev Sci Instrum; 2017 Jun; 88(6):065104. PubMed ID: 28668003
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Field-cycling NMR experiments in an ultra-wide magnetic field range: relaxation and coherent polarization transfer.
    Zhukov IV; Kiryutin AS; Yurkovskaya AV; Grishin YA; Vieth HM; Ivanov KL
    Phys Chem Chem Phys; 2018 May; 20(18):12396-12405. PubMed ID: 29623979
    [TBL] [Abstract][Full Text] [Related]  

  • 17. All-Optical Parametric-Resonance Magnetometer Based on
    Wang B; Peng X; Wang H; Xiao W; Guo H
    Sensors (Basel); 2022 May; 22(11):. PubMed ID: 35684805
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Scalar relaxation of NMR transitions at ultralow magnetic field.
    Tayler MCD; Gladden LF
    J Magn Reson; 2019 Jan; 298():101-106. PubMed ID: 30544013
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In situ triaxial magnetic field compensation for the spin-exchange-relaxation-free atomic magnetometer.
    Fang J; Qin J
    Rev Sci Instrum; 2012 Oct; 83(10):103104. PubMed ID: 23126748
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Relaxivity of gadolinium complexes detected by atomic magnetometry.
    Michalak DJ; Xu S; Lowery TJ; Crawford CW; Ledbetter M; Bouchard LS; Wemmer DE; Budker D; Pines A
    Magn Reson Med; 2011 Aug; 66(2):605-8. PubMed ID: 21433067
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.