These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 24225879)

  • 1. Calcium transport by pea root membranes : I. Purification of membranes and characteristics of uptake.
    Butcher RD; Evans DE
    Planta; 1987 Oct; 172(2):265-72. PubMed ID: 24225879
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Calcium transport by pea root membranes : II. Effects of calmodulin and inhibitors.
    Butcher RD; Evans DE
    Planta; 1987 Oct; 172(2):273-9. PubMed ID: 24225880
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ATP-dependent CA(2+) transport in endoplasmic reticulum isolated from roots ofLepidium sativum L.
    Buckhout TJ
    Planta; 1983 Jan; 159(1):84-90. PubMed ID: 24258090
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Calcium Transport in Sealed Vesicles from Red Beet (Beta vulgaris L.) Storage Tissue : I. Characterization of a Ca-Pumping ATPase Associated with the Endoplasmic Reticulum.
    Giannini JL; Gildensoph LH; Reynolds-Niesman I; Briskin DP
    Plant Physiol; 1987 Dec; 85(4):1129-36. PubMed ID: 16665816
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of Mg2+-dependent ATP hydrolase activities of pea nodule symbiosomes and of pea root plasmalemma, obtained by an aqueous polymer two-phase system.
    Rojas-Ojeda P; Hernández LE; Brewin NJ; Carpena-Ruiz R
    J Chromatogr B Biomed Sci Appl; 1998 Jun; 711(1-2):139-49. PubMed ID: 9699983
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrogenic calcium transport in plasma membrane of rat pancreatic acinar cells.
    Bayerdörffer E; Eckhardt L; Haase W; Schulz I
    J Membr Biol; 1985; 84(1):45-60. PubMed ID: 3999124
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sucrose transport in tonoplast vesicles of red beet roots is linked to ATP hydrolysis.
    Getz HP
    Planta; 1991 Sep; 185(2):261-8. PubMed ID: 24186350
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Calcium-ion-transporting activity in two microsomal subfractions from rat pancreatic acini. Modulation by carbamylcholine.
    Richardson AE; Dormer RL
    Biochem J; 1984 Apr; 219(2):679-85. PubMed ID: 6430272
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Calcium and proton transport in membrane vesicles from barley roots.
    Dupont FM; Bush DS; Windle JJ; Jones RL
    Plant Physiol; 1990 Sep; 94(1):179-88. PubMed ID: 16667684
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Novel ATP-dependent calcium transport component from rat liver plasma membranes. The transporter and the previously reported (Ca2+-Mg2+)-ATPase are different proteins.
    Lin SH
    J Biol Chem; 1985 Jul; 260(13):7850-6. PubMed ID: 2409077
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Density gradient localization of plasma membrane and tonoplast from storage tissue of growing and dormant red beet : characterization of proton-transport and ATPase in tonoplast vesicles.
    Poole RJ; Briskin DP; Krátký Z; Johnstone RM
    Plant Physiol; 1984 Mar; 74(3):549-56. PubMed ID: 16663459
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of solute transport in plasma membrane vesicles isolated from cotyledons ofRicinus communis L. : I. Adenosine triphosphatase and pyrophosphatase activities associated with a plasma membrane fraction isolated by phase partitioning.
    Williams LE; Nelson SJ; Hall JL
    Planta; 1990 Nov; 182(4):532-9. PubMed ID: 24197373
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Isolation and characterization of plasma membranes from bovine carotid arteries.
    Sharma RV; Bhalla RC
    Am J Physiol; 1986 Jan; 250(1 Pt 1):C65-75. PubMed ID: 3002186
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gibberellic-acid-stimulated Ca(2+) accumulation in endoplasmic reticulum of barley aleurone: Ca(2+) transport and steady-state levels.
    Bush DS; Biswas AK; Jones RL
    Planta; 1989 Jun; 178(3):411-20. PubMed ID: 24212909
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Trafficking of lipids from the endoplasmic reticulum to the Golgi apparatus in a cell-free system from rat liver.
    Moreau P; Rodriguez M; Cassagne C; Morré DM; Morré DJ
    J Biol Chem; 1991 Mar; 266(7):4322-8. PubMed ID: 1999421
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of Mg-ATP-dependent Ca2+ transport in cat pancreatic microsomes.
    Kribben A; Tyrakowski T; Schulz I
    Am J Physiol; 1983 May; 244(5):G480-90. PubMed ID: 6133452
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ca++-transport across basal-lateral plasma membranes from rat small intestinal epithelial cells.
    Hildmann B; Schmidt A; Murer H
    J Membr Biol; 1982; 65(1-2):55-62. PubMed ID: 6799650
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel primary Ca(2+)-transport system from Saccharomyces cerevisiae.
    Okorokov LA; Tanner W; Lehle L
    Eur J Biochem; 1993 Sep; 216(2):573-7. PubMed ID: 8397085
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vitamin D-regulated, ATP-dependent calcium transport by intestinal Golgi vesicles during maturation in the rat.
    Arab N; Ghishan F
    Pediatr Res; 1989 Jul; 26(1):58-62. PubMed ID: 2771509
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Isolation of a plasma-membrane fraction from gastric smooth muscle. Comparison of the calcium uptake with that in endoplasmic reticulum.
    Raeymaekers L; Wuytack F; Eggermont J; De Schutter G; Casteels R
    Biochem J; 1983 Feb; 210(2):315-22. PubMed ID: 6860302
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.