BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 24226075)

  • 1. A monoclonal antibody specific for the red-absorbing form of phytochrome.
    Holdsworth ML; Whitelam GC
    Planta; 1987 Dec; 172(4):539-47. PubMed ID: 24226075
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification with Monoclonal Antibodies of a Second Antigenic Domain on Avena Phytochrome that Changes upon Its Photoconversion.
    Shimazaki Y; Cordonnier MM; Pratt LH
    Plant Physiol; 1986 Sep; 82(1):109-13. PubMed ID: 16664975
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure function studies on phytochrome. Identification of light-induced conformational changes in 124-kDa Avena phytochrome in vitro.
    Lagarias JC; Mercurio FM
    J Biol Chem; 1985 Feb; 260(4):2415-23. PubMed ID: 3882693
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A photoreversible circular dichroism spectral change in oat phytochrome is suppressed by a monoclonal antibody that binds near its N-terminus and by chromophore modification.
    Chai YG; Song PS; Cordonnier MM; Pratt LH
    Biochemistry; 1987 Aug; 26(16):4947-52. PubMed ID: 3663636
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chromophore topography and secondary structure of 124-kilodalton Avena phytochrome probed by Zn2(+)-induced chromophore modification.
    Sommer D; Song PS
    Biochemistry; 1990 Feb; 29(7):1943-8. PubMed ID: 2184893
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Red light-induced formation of ubiquitin-phytochrome conjugates: Identification of possible intermediates of phytochrome degradation.
    Shanklin J; Jabben M; Vierstra RD
    Proc Natl Acad Sci U S A; 1987 Jan; 84(2):359-63. PubMed ID: 16593800
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Physicochemical differences between the red- and the far-red-absorbing forms of phytochrome.
    Hunt RE; Pratt LH
    Biochemistry; 1981 Feb; 20(4):941-5. PubMed ID: 7213624
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Discrimination between the red- and far-red-absorbing forms of phytochrome from Avena sativa L. by monoclonal antibodies.
    Thomas B; Penn SE; Butcher GW; Galfre G
    Planta; 1984 Mar; 160(4):382-4. PubMed ID: 24258587
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spectral Characterization and Proteolytic Mapping of Native 120-Kilodalton Phytochrome from Cucurbita pepo L.
    Vierstra RD; Quail PH
    Plant Physiol; 1985 Apr; 77(4):990-8. PubMed ID: 16664177
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photochemistry of 124 kilodalton Avena phytochrome in vitro.
    Vierstra RD; Quail PH
    Plant Physiol; 1983 May; 72(1):264-7. PubMed ID: 16662975
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Purification and spectroscopic properties of 124-kDa oat phytochrome.
    Chai YG; Singh BR; Song PS; Lee J; Robinson GW
    Anal Biochem; 1987 Jun; 163(2):322-30. PubMed ID: 3661984
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differential exposure of aromatic amino acids in the red-light-absorbing and far-red-light-absorbing forms of 124-kDa oat phytochrome.
    Singh BR; Song PS; Eilfeld P; RĂ¼diger W
    Eur J Biochem; 1989 Oct; 184(3):715-21. PubMed ID: 2806252
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ubiquitin-phytochrome conjugates. Pool dynamics during in vivo phytochrome degradation.
    Jabben M; Shanklin J; Vierstra RD
    J Biol Chem; 1989 Mar; 264(9):4998-5005. PubMed ID: 2538468
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of separate molecular domains in the structure of phytochrome from etiolated Avena sativa L.
    Jones AM; Vierstra RD; Daniels SM; Quail P
    Planta; 1985 Jul; 164(4):501-6. PubMed ID: 24248223
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differential interactions of phytochrome A (Pr vs. Pfr) with monoclonal antibodies probed by a surface plasmon resonance technique.
    Natori C; Kim JI; Bhoo SH; Han YJ; Hanzawa H; Furuya M; Song PS
    Photochem Photobiol Sci; 2007 Jan; 6(1):83-9. PubMed ID: 17200742
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modifications of Sulfhydryl Groups on Phytochrome and Their Influence on Physicochemical Differences between the Red- and Far-Red-Absorbing Forms.
    Smith WO; Cyr KL
    Plant Physiol; 1988 May; 87(1):195-200. PubMed ID: 16666102
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tetranitromethane oxidation of phytochrome chromophore as a function of spectral form and molecular weight.
    Hahn TR; Song PS; Quail PH; Vierstra RD
    Plant Physiol; 1984 Apr; 74(4):755-8. PubMed ID: 16663505
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photoreversible change in the conformation of phytochrome as probed with a covalently bound fluorescent sulfhydryl reagent, N-(9-acridinyl)maleimide.
    Yamamoto KT
    Biochim Biophys Acta; 1993 Jun; 1163(3):227-33. PubMed ID: 8507660
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phytochrome structure: Peptide fragments from the amino-terminal domain involved in protein-chromophore interactions.
    Jones AM; Quail PH
    Planta; 1989 May; 178(2):147-56. PubMed ID: 24212743
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Red light-induced accumulation of ubiquitin-phytochrome conjugates in both monocots and dicots.
    Jabben M; Shanklin J; Vierstra RD
    Plant Physiol; 1989 Jun; 90(2):380-4. PubMed ID: 16666778
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.