These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
127 related articles for article (PubMed ID: 24226251)
1. Effect of simple phenolic compounds of heather (Calluna vulgaris) on rumen microbial activity in vitro. Murray AH; Iason GR; Stewart C J Chem Ecol; 1996 Aug; 22(8):1493-504. PubMed ID: 24226251 [TBL] [Abstract][Full Text] [Related]
2. The origin of urinary aromatic compounds excreted by ruminants. 4. The potential use of urine aromatic acid and phenol outputs as a measure of voluntary food intake. Martin AK; Milne JA; Moberly P Br J Nutr; 1983 Jan; 49(1):87-99. PubMed ID: 6821693 [TBL] [Abstract][Full Text] [Related]
3. The origin of urinary aromatic compounds excreted by ruminants. 3. The metabolism of phenolic compounds to simple phenols. Martin AK Br J Nutr; 1982 Nov; 48(3):497-507. PubMed ID: 7171537 [TBL] [Abstract][Full Text] [Related]
4. Urinary quinol and orcinol outputs as indices of voluntary intake of heather (Calluna vulgaris L. (Hull)) by sheep. Martin AK; Milne JA; Moberley P Proc Nutr Soc; 1975 Sep; 34(2):70A-71A. PubMed ID: 1187633 [No Abstract] [Full Text] [Related]
5. Herbivory and Attenuated UV Radiation Affect Volatile Emissions of the Invasive Weed Effah E; Barrett DP; Peterson PG; Wargent JJ; Potter MA; Holopainen JK; Clavijo McCormick A Molecules; 2020 Jul; 25(14):. PubMed ID: 32668802 [No Abstract] [Full Text] [Related]
6. Is the anthelmintic effect of heather supplementation to grazing goats always accompanied by anti-nutritional effects? Frutos P; Moreno-Gonzalo J; Hervás G; García U; Ferreira LM; Celaya R; Toral PG; Ortega-Mora LM; Ferre I; Osoro K Animal; 2008 Oct; 2(10):1449-56. PubMed ID: 22443902 [TBL] [Abstract][Full Text] [Related]
7. Effect of phenolic acids and phenolics from plant cell walls on rumenlike fermentation in consecutive batch culture. Theodorou MK; Gascoyne DJ; Akin DE; Hartley RD Appl Environ Microbiol; 1987 May; 53(5):1046-50. PubMed ID: 3606090 [TBL] [Abstract][Full Text] [Related]
8. Effect of essential oil active compounds on rumen microbial fermentation and nutrient flow in in vitro systems. Castillejos L; Calsamiglia S; Ferret A J Dairy Sci; 2006 Jul; 89(7):2649-58. PubMed ID: 16772584 [TBL] [Abstract][Full Text] [Related]
9. Effects of species-diverse high-alpine forage on in vitro ruminal fermentation when used as donor cow's feed or directly incubated. Khiaosa-Ard R; Soliva CR; Kreuzer M; Leiber F Animal; 2012 Nov; 6(11):1764-73. PubMed ID: 22717263 [TBL] [Abstract][Full Text] [Related]
10. Phytochemical Diversity and Antioxidant Potential of Wild Heather ( Kaunaite V; Vilkickyte G; Raudone L Plants (Basel); 2022 Aug; 11(17):. PubMed ID: 36079589 [No Abstract] [Full Text] [Related]
11. Phytochemical Profile and Pharmacological Activities of Water and Hydroethanolic Dry Extracts of Starchenko G; Hrytsyk A; Raal A; Koshovyi О Plants (Basel); 2020 Jun; 9(6):. PubMed ID: 32549372 [TBL] [Abstract][Full Text] [Related]
12. Assessment of the effect of condensed (acacia and quebracho) and hydrolysable (chestnut and valonea) tannins on rumen fermentation and methane production in vitro. Hassanat F; Benchaar C J Sci Food Agric; 2013 Jan; 93(2):332-9. PubMed ID: 22740383 [TBL] [Abstract][Full Text] [Related]
13. Diet supplementation with thyme oil and its main component thymol failed to favorably alter rumen fermentation, improve nutrient utilization, or enhance milk production in dairy cows. Benchaar C J Dairy Sci; 2021 Jan; 104(1):324-336. PubMed ID: 33131821 [TBL] [Abstract][Full Text] [Related]
14. Effects of BioChlor and Fermenten on microbial protein synthesis in continuous culture fermenters. Lean IJ; Webster TK; Hoover W; Chalupa W; Sniffen CJ; Evans E; Block E; Rabiee AR J Dairy Sci; 2005 Jul; 88(7):2524-36. PubMed ID: 15956315 [TBL] [Abstract][Full Text] [Related]
15. Effects of California chaparral plants on in vitro ruminal fermentation of forage and concentrate diet. Narvaez N; Wang Y; Xu Z; McAllister T J Sci Food Agric; 2013 Feb; 93(3):550-9. PubMed ID: 22968963 [TBL] [Abstract][Full Text] [Related]
16. In vitro effect of heather (Ericaceae) extracts on different development stages of Teladorsagia circumcincta and Haemonchus contortus. Moreno-Gonzalo J; Manolaraki F; Frutos P; Hervás G; Celaya R; Osoro K; Ortega-Mora LM; Hoste H; Ferre I Vet Parasitol; 2013 Oct; 197(1-2):235-43. PubMed ID: 23764130 [TBL] [Abstract][Full Text] [Related]
17. The phytochemical and bioactivity profiles of wild Calluna vulgaris L. flowers. Rodrigues F; Moreira T; Pinto D; Pimentel FB; Costa ASG; Nunes MA; Gonçalves Albuquerque T; S Costaa H; Palmeira-de-Oliveira A; Oliveira AI; Sut S; Dall'Acqua S; Oliveira MBPP Food Res Int; 2018 Sep; 111():724-731. PubMed ID: 30007738 [TBL] [Abstract][Full Text] [Related]
18. Microbial fermentation of starch- or fibre-rich feeds added with dry or pre-activated Saccharomyces cerevisiae studied in vitro under conditions simulating high-concentrate feeding for ruminants. Amanzougarene Z; Tejeda MP; Calvo H; de la Fuente G; Fondevila M J Sci Food Agric; 2020 Mar; 100(5):2236-2243. PubMed ID: 31917481 [TBL] [Abstract][Full Text] [Related]
19. In vitro-in vivo study on the effects of plant compounds on rumen fermentation, microbial abundances and methane emissions in goats. Martínez-Fernández G; Abecia L; Martín-García AI; Ramos-Morales E; Hervás G; Molina-Alcaide E; Yáñez-Ruiz DR Animal; 2013 Dec; 7(12):1925-34. PubMed ID: 24237672 [TBL] [Abstract][Full Text] [Related]
20. Effect of the magnitude of the decrease of rumen pH on rumen fermentation in a dual-flow continuous culture system. Cerrato-Sánchez M; Calsamiglia S; Ferret A J Anim Sci; 2008 Feb; 86(2):378-83. PubMed ID: 17998434 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]