These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 24226453)

  • 1. Mapping of ripening-related or -specific cDNA clones of tomato (Lycopersicon esculentum).
    Kinzer SM; Schwager SJ; Mutschler MA
    Theor Appl Genet; 1990 Apr; 79(4):489-96. PubMed ID: 24226453
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Toward a saturated linkage map in tomato based on isozymes and random cDNA sequences.
    Bernatzky R; Tanksley SD
    Genetics; 1986 Apr; 112(4):887-98. PubMed ID: 17246322
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Integration of the classical and molecular linkage maps of tomato chromosome 6.
    Weide R; van Wordragen MF; Lankhorst RK; Verkerk R; Hanhart C; Liharska T; Pap E; Stam P; Zabel P; Koornneef M
    Genetics; 1993 Dec; 135(4):1175-86. PubMed ID: 7905845
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Changes in ripening-related processes in tomato conditioned by the alc mutant.
    Mutschler M; Guttieri M; Kinzer S; Grierson D; Tucker G
    Theor Appl Genet; 1988 Aug; 76(2):285-92. PubMed ID: 24232117
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genetic analysis of RFLPs, GATA microsatellites and RAPDs in a cross between L. esculentum and L. pimpinellifolium.
    Grandillo S; Tanksley SD
    Theor Appl Genet; 1996 Jun; 92(8):957-65. PubMed ID: 24166622
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tomato chromosome 1: high resolution genetic and physical mapping of the short arm in an interspecific Lycopersicon esculentum x L. peruvianum cross.
    Bonnema G; Schipper D; van Heusden S; Zabel P; Lindhout P
    Mol Gen Genet; 1997 Jan; 253(4):455-62. PubMed ID: 9037105
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of cDNA clones for tomato (Lycopersicon esculentum Mill.) mRNAs that accumulate during fruit ripening and leaf senescence in response to ethylene.
    Davies KM; Grierson D
    Planta; 1989 Aug; 179(1):73-80. PubMed ID: 24201424
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Expression of unilateral incompatibility in pollen of Lycopersicon pennellii is determined by major loci on chromosomes 1, 6 and 10.
    Chetelat RT; Deverna JW
    Theor Appl Genet; 1991 Oct; 82(6):704-12. PubMed ID: 24213444
    [TBL] [Abstract][Full Text] [Related]  

  • 9. QTL analysis of pest resistance in the wild tomato Lycopersicon pennellii: QTLs controlling acylsugar level and composition.
    Mutschler MA; Doerge RW; Liu SC; Kuai JP; Liedl BE; Shapiro JA
    Theor Appl Genet; 1996 May; 92(6):709-18. PubMed ID: 24166395
    [TBL] [Abstract][Full Text] [Related]  

  • 10. fw 2.2:a major QTL controlling fruit weight is common to both red- and green-fruited tomato species.
    Alpert KB; Grandillo S; Tanksley SD
    Theor Appl Genet; 1995 Nov; 91(6-7):994-1000. PubMed ID: 24169988
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lycopersicon esculentum lines containing small overlapping introgressions from L. pennellii.
    Eshed Y; Abu-Abied M; Saranga Y; Zamir D
    Theor Appl Genet; 1992 May; 83(8):1027-34. PubMed ID: 24202931
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cloning of tomato (Lycopersicon esculentum Mill.) arginine decarboxylase gene and its expression during fruit ripening.
    Rastogi R; Dulson J; Rothstein SJ
    Plant Physiol; 1993 Nov; 103(3):829-34. PubMed ID: 8022938
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unilateral incompatibility as a major cause of skewed segregation in the cross between Lycopersicon esculentum and L. pennellii.
    Foolad MR
    Plant Cell Rep; 1996 Apr; 15(8):627-33. PubMed ID: 24178531
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The tomato polygalacturonase gene and ripening-specific expression in transgenic plants.
    Bird CR; Smith CJ; Ray JA; Moureau P; Bevan MW; Bird AS; Hughes S; Morris PC; Grierson D; Schuch W
    Plant Mol Biol; 1988 Sep; 11(5):651-62. PubMed ID: 24272499
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative linkage map of the Solanum lycopersicoides and S. sitiens genomes and their differentiation from tomato.
    Pertuzé RA; Ji Y; Chetelat RT
    Genome; 2002 Dec; 45(6):1003-12. PubMed ID: 12502244
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Resistance to powdery mildew (Oidium lycopersicum) in Lycopersicon hirsutum is controlled by an incompletely-dominant gene Ol-1 on chromosome 6.
    van der Beek JG; Pet G; Lindhout P
    Theor Appl Genet; 1994 Oct; 89(4):467-73. PubMed ID: 24177896
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Organization and expression of polygalacturonase and other ripening related genes in Ailsa Craig "Neverripe" and "Ripening inhibitor" tomato mutants.
    Knapp J; Moureau P; Schuch W; Grierson D
    Plant Mol Biol; 1989 Jan; 12(1):105-16. PubMed ID: 24272722
    [TBL] [Abstract][Full Text] [Related]  

  • 18. RFLP Maps Based on a Common Set of Clones Reveal Modes of Chromosomal Evolution in Potato and Tomato.
    Bonierbale MW; Plaisted RL; Tanksley SD
    Genetics; 1988 Dec; 120(4):1095-103. PubMed ID: 17246486
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genes from Lycopersicon chmielewskii affecting tomato quality during fruit ripening.
    Azanza F; Kim D; Tanksley SD; Juvik JA
    Theor Appl Genet; 1995 Aug; 91(3):495-504. PubMed ID: 24169841
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An RFLP linkage map of Lycopersicon peruvianum.
    van Ooijen JW; Sandbrink JM; Vrielink M; Verkerk R; Zabel P; Lindhout P
    Theor Appl Genet; 1994 Dec; 89(7-8):1007-13. PubMed ID: 24178117
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.