These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 242268)

  • 21. Lysine-ketoglutarate reductase in human tissues.
    Hutzler J; Dancis J
    Biochim Biophys Acta; 1975 Jan; 377(1):42-51. PubMed ID: 235294
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Conversion of pipecolic acid into lysine in Penicillium chrysogenum requires pipecolate oxidase and saccharopine reductase: characterization of the lys7 gene encoding saccharopine reductase.
    Naranjo L; Martin de Valmaseda E; Bañuelos O; Lopez P; Riaño J; Casqueiro J; Martin JF
    J Bacteriol; 2001 Dec; 183(24):7165-72. PubMed ID: 11717275
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The enzymology of lysine catabolism in rice seeds--isolation, characterization, and regulatory properties of a lysine 2-oxoglutarate reductase/saccharopine dehydrogenase bifunctional polypeptide.
    Gaziola SA; Teixeira CM; Lugli J; Sodek L; Azevedo RA
    Eur J Biochem; 1997 Jul; 247(1):364-71. PubMed ID: 9249048
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Inhibition of bovine liver lysine-ketoglutarate reductase by urea cycle metabolites and saccharopine.
    Ameen M; Palmer T; Oberholzer VG
    Biochem Int; 1987 Apr; 14(4):589-95. PubMed ID: 3134024
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Purification and properties of L-lysine-alpha-ketoglutarate reductase from human placenta.
    Fjellstedt TA; Robinson JC
    Arch Biochem Biophys; 1975 Jun; 168(2):536-48. PubMed ID: 1169916
    [No Abstract]   [Full Text] [Related]  

  • 26. Familial hyperlysinemias--multiple enzyme deficiencies associated with the bifunctional aminoadipic semialdehyde synthase.
    Cox RP; Markovitz PJ; Chuang DT
    Trans Am Clin Climatol Assoc; 1986; 97():69-81. PubMed ID: 3939388
    [No Abstract]   [Full Text] [Related]  

  • 27. Multiple enzyme defects in familial hyperlysinemia.
    Dancis J; Hutzler J; Woody NC; Cox RP
    Pediatr Res; 1976 Jul; 10(7):686-91. PubMed ID: 934735
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Overall kinetic mechanism of saccharopine dehydrogenase from Saccharomyces cerevisiae.
    Xu H; West AH; Cook PF
    Biochemistry; 2006 Oct; 45(39):12156-66. PubMed ID: 17002315
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A proposed proton shuttle mechanism for saccharopine dehydrogenase from Saccharomyces cerevisiae.
    Xu H; Alguindigue SS; West AH; Cook PF
    Biochemistry; 2007 Jan; 46(3):871-82. PubMed ID: 17223709
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Rat hepatic lysine-2-oxoglutarate reductase activity. Induction by lysine, glucagon and cycloheximide administration.
    Hussein L; Müller R
    Nutr Metab; 1978; 22(2):127-40. PubMed ID: 619319
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Structural studies of the final enzyme in the alpha-aminoadipate pathway-saccharopine dehydrogenase from Saccharomyces cerevisiae.
    Burk DL; Hwang J; Kwok E; Marrone L; Goodfellow V; Dmitrienko GI; Berghuis AM
    J Mol Biol; 2007 Oct; 373(3):745-54. PubMed ID: 17854830
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Polyamine oxidases.
    Morgan DM
    Biochem Soc Trans; 1985 Apr; 13(2):322-6. PubMed ID: 3926555
    [No Abstract]   [Full Text] [Related]  

  • 33. Lysine degradation through the saccharopine pathway in mammals: involvement of both bifunctional and monofunctional lysine-degrading enzymes in mouse.
    Papes F; Kemper EL; Cord-Neto G; Langone F; Arruda P
    Biochem J; 1999 Dec; 344 Pt 2(Pt 2):555-63. PubMed ID: 10567240
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Isolation and characterization of enzymes involved in lysine catabolism from sorghum seeds.
    Fornazier RF; Gaziola SA; Helm CV; Lea PJ; Azevedo RA
    J Agric Food Chem; 2005 Mar; 53(5):1791-8. PubMed ID: 15740075
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Isolation of the bifunctional enzyme lysine 2-oxoglutarate reductase-saccharopine dehydrogenase from Phaseolus vulgaris.
    Cunha Lima ST; Azevedo RA; Santoro LG; Gaziola SA; Lea PJ
    Amino Acids; 2003; 24(1-2):179-86. PubMed ID: 12624751
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Structure and regulation of the bifunctional enzyme lysine-oxoglutarate reductase-saccharopine dehydrogenase in maize.
    Kemper EL; Cord-Neto G; Capella AN; Gonçalves-Butruile M; Azevedo RA; Arruda P
    Eur J Biochem; 1998 May; 253(3):720-9. PubMed ID: 9654071
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Amine oxidases and pregnancy.
    Morgan DM
    Br J Obstet Gynaecol; 1982 Mar; 89(3):177-8. PubMed ID: 7039664
    [No Abstract]   [Full Text] [Related]  

  • 38. The oxidation state of active site thiols determines activity of saccharopine dehydrogenase at low pH.
    Bobyk KD; Kim SG; Kumar VP; Kim SK; West AH; Cook PF
    Arch Biochem Biophys; 2011 Sep; 513(2):71-80. PubMed ID: 21798231
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Investigations on the kinetic mechanism of octopine dehydrogenase. 1. Steady-state kinetics.
    Doublet MO; Olomucki A
    Eur J Biochem; 1975 Nov; 59(1):175-83. PubMed ID: 1248
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Delta 1-pyrroline-5-carboxylate dehydrogenase in the bovine ciliary body and iris.
    Shiono T; Hayasaka S; Mizuno K
    Invest Ophthalmol Vis Sci; 1987 Mar; 28(3):459-62. PubMed ID: 3557858
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.