These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 24226810)

  • 1. Interactions of polymers with reduced graphene oxide: van der Waals binding energies of benzene on graphene with defects.
    Hassan M; Walter M; Moseler M
    Phys Chem Chem Phys; 2014 Jan; 16(1):33-7. PubMed ID: 24226810
    [TBL] [Abstract][Full Text] [Related]  

  • 2. First-principles analysis of defect-mediated Li adsorption on graphene.
    Yildirim H; Kinaci A; Zhao ZJ; Chan MK; Greeley JP
    ACS Appl Mater Interfaces; 2014 Dec; 6(23):21141-50. PubMed ID: 25394787
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A computational study on the role of noncovalent interactions in the stability of polymer/graphene nanocomposites.
    Güryel S; Alonso M; Hajgató B; Dauphin Y; Van Lier G; Geerlings P; De Proft F
    J Mol Model; 2017 Feb; 23(2):43. PubMed ID: 28154980
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of the electric field on the properties of ZnO-graphene composites: a density functional theory study.
    Geng W; Zhao X; Zan W; Liu H; Yao X
    Phys Chem Chem Phys; 2014 Feb; 16(8):3542-8. PubMed ID: 24285715
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tuning the van der Waals Interaction of Graphene with Molecules via Doping.
    Huttmann F; Martínez-Galera AJ; Caciuc V; Atodiresei N; Schumacher S; Standop S; Hamada I; Wehling TO; Blügel S; Michely T
    Phys Rev Lett; 2015 Dec; 115(23):236101. PubMed ID: 26684126
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ab initio and semi-empirical van der Waals study of graphene-boron nitride interaction from a molecular point of view.
    Caciuc V; Atodiresei N; Callsen M; Lazić P; Blügel S
    J Phys Condens Matter; 2012 Oct; 24(42):424214. PubMed ID: 23032913
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spin-polarized semiconductors: tuning the electronic structure of graphene by introducing a regular pattern of sp3 carbons on the graphene plane.
    Jing L; Huang P; Zhu H; Gao X
    Small; 2013 Jan; 9(2):306-11. PubMed ID: 23027424
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamical screening of the van der Waals interaction between graphene layers.
    Dappe YJ; Bolcatto PG; Ortega J; Flores F
    J Phys Condens Matter; 2012 Oct; 24(42):424208. PubMed ID: 23032606
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Graphene in ionic liquids: collective van der Waals interaction and hindrance of self-assembly pathway.
    Zhao Y; Hu Z
    J Phys Chem B; 2013 Sep; 117(36):10540-7. PubMed ID: 23957744
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Filter function of graphene oxide: Trapping perfluorinated molecules.
    Barker D; Fors A; Lindgren E; Olesund A; Schröder E
    J Chem Phys; 2020 Jan; 152(2):024704. PubMed ID: 31941298
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Binding energies in benzene dimers: Nonlocal density functional calculations.
    Puzder A; Dion M; Langreth DC
    J Chem Phys; 2006 Apr; 124(16):164105. PubMed ID: 16674127
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Density functional study of the adsorption and van der Waals binding of aromatic and conjugated compounds on the basal plane of MoS(2).
    Moses PG; Mortensen JJ; Lundqvist BI; Norskov JK
    J Chem Phys; 2009 Mar; 130(10):104709. PubMed ID: 19292551
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the physisorption of water on graphene: a CCSD(T) study.
    Voloshina E; Usvyat D; Schütz M; Dedkov Y; Paulus B
    Phys Chem Chem Phys; 2011 Jul; 13(25):12041-7. PubMed ID: 21625710
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Binding of hydrogen on benzene, coronene, and graphene from quantum Monte Carlo calculations.
    Ma J; Michaelides A; Alfè D
    J Chem Phys; 2011 Apr; 134(13):134701. PubMed ID: 21476763
    [TBL] [Abstract][Full Text] [Related]  

  • 15. van der Waals interaction of simple, parallel polymers.
    Kleis J; Schröder E
    J Chem Phys; 2005 Apr; 122(16):164902. PubMed ID: 15945702
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The interactions between TiO2 and graphene with surface inhomogeneity determined using density functional theory.
    Bukowski B; Deskins NA
    Phys Chem Chem Phys; 2015 Nov; 17(44):29734-46. PubMed ID: 26477857
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adsorption of nitrogen oxides on graphene and graphene oxides: insights from density functional calculations.
    Tang S; Cao Z
    J Chem Phys; 2011 Jan; 134(4):044710. PubMed ID: 21280788
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced photocatalytic properties of titania-graphene nanocomposites: a density functional theory study.
    Geng W; Liu H; Yao X
    Phys Chem Chem Phys; 2013 Apr; 15(16):6025-33. PubMed ID: 23493794
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of Stone-Wales defects on the interfacial interactions among graphene, carbon nanotubes, and Nylon 6: A first-principles study.
    Jha SK; Roth M; Todde G; Buchanan JP; Moser RD; Shukla MK; Subramanian G
    J Chem Phys; 2018 Aug; 149(5):054703. PubMed ID: 30089374
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of frictional forces on graphene and graphite.
    Lee H; Lee N; Seo Y; Eom J; Lee S
    Nanotechnology; 2009 Aug; 20(32):325701. PubMed ID: 19620757
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.