These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 24226810)

  • 21. Theoretical assessment of graphene-metal contacts.
    Janthon P; Viñes F; Kozlov SM; Limtrakul J; Illas F
    J Chem Phys; 2013 Jun; 138(24):244701. PubMed ID: 23822258
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Binding energy and work function of organic electrode materials phenanthraquinone, pyromellitic dianhydride and their derivatives adsorbed on graphene.
    Yu YX
    ACS Appl Mater Interfaces; 2014 Sep; 6(18):16267-75. PubMed ID: 25216389
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Desorption of n-alkanes from graphene: a van der Waals density functional study.
    Londero E; Karlson EK; Landahl M; Ostrovskii D; Rydberg JD; Schröder E
    J Phys Condens Matter; 2012 Oct; 24(42):424212. PubMed ID: 23032797
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Density functional theory calculations and molecular dynamics simulations of the adsorption of biomolecules on graphene surfaces.
    Qin W; Li X; Bian WW; Fan XJ; Qi JY
    Biomaterials; 2010 Feb; 31(5):1007-16. PubMed ID: 19880174
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Adsorption of Cu, Ag, and Au atoms on graphene including van der Waals interactions.
    Amft M; Lebègue S; Eriksson O; Skorodumova NV
    J Phys Condens Matter; 2011 Oct; 23(39):395001. PubMed ID: 21891833
    [TBL] [Abstract][Full Text] [Related]  

  • 26. First-principles study for stability and binding mechanism of graphene/Ni(111) interface: Role of vdW interaction.
    Zhang WB; Chen C; Tang PY
    J Chem Phys; 2014 Jul; 141(4):044708. PubMed ID: 25084938
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effect of chemical modification of graphene on mechanical, electrical, and thermal properties of polyimide/graphene nanocomposites.
    Ha HW; Choudhury A; Kamal T; Kim DH; Park SY
    ACS Appl Mater Interfaces; 2012 Sep; 4(9):4623-30. PubMed ID: 22928645
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A density functional theory study of simplest nanocomposites formed by graphene oxide and polyvinyl alcohol: geometry, interaction energy and vibrational spectrum.
    Gorb L; Ilchenko M; Leszczynski J
    J Mol Model; 2020 Jun; 26(7):183. PubMed ID: 32588140
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Two- and three-body interatomic dispersion energy contributions to binding in molecules and solids.
    von Lilienfeld OA; Tkatchenko A
    J Chem Phys; 2010 Jun; 132(23):234109. PubMed ID: 20572691
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Structural and electronic properties of graphene-ZnO interfaces: dispersion-corrected density functional theory investigations.
    Xu P; Tang Q; Zhou Z
    Nanotechnology; 2013 Aug; 24(30):305401. PubMed ID: 23818035
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Van der Waals interactions between hydrocarbon molecules and zeolites: periodic calculations at different levels of theory, from density functional theory to the random phase approximation and Møller-Plesset perturbation theory.
    Göltl F; Grüneis A; Bučko T; Hafner J
    J Chem Phys; 2012 Sep; 137(11):114111. PubMed ID: 22998253
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Accurate description of van der Waals complexes by density functional theory including empirical corrections.
    Grimme S
    J Comput Chem; 2004 Sep; 25(12):1463-73. PubMed ID: 15224390
    [TBL] [Abstract][Full Text] [Related]  

  • 33. van der Waals epitaxial growth of graphene on sapphire by chemical vapor deposition without a metal catalyst.
    Hwang J; Kim M; Campbell D; Alsalman HA; Kwak JY; Shivaraman S; Woll AR; Singh AK; Hennig RG; Gorantla S; Rümmeli MH; Spencer MG
    ACS Nano; 2013 Jan; 7(1):385-95. PubMed ID: 23244231
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Diamond as an inert substrate of graphene.
    Hu W; Li Z; Yang J
    J Chem Phys; 2013 Feb; 138(5):054701. PubMed ID: 23406135
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Physisorption of nucleobases on graphene: a comparative van der Waals study.
    Le D; Kara A; Schröder E; Hyldgaard P; Rahman TS
    J Phys Condens Matter; 2012 Oct; 24(42):424210. PubMed ID: 23032709
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A van der Waals density functional study of chloroform and other trihalomethanes on graphene.
    Åkesson J; Sundborg O; Wahlström O; Schröder E
    J Chem Phys; 2012 Nov; 137(17):174702. PubMed ID: 23145737
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Structures and interaction energies of stacked graphene-nucleobase complexes.
    Antony J; Grimme S
    Phys Chem Chem Phys; 2008 May; 10(19):2722-9. PubMed ID: 18464987
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Role of dispersion forces in the structure of graphene monolayers on Ru surfaces.
    Stradi D; Barja S; Díaz C; Garnica M; Borca B; Hinarejos JJ; Sánchez-Portal D; Alcamí M; Arnau A; Vázquez de Parga AL; Miranda R; Martín F
    Phys Rev Lett; 2011 May; 106(18):186102. PubMed ID: 21635104
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Density functional theory with dispersion corrections for supramolecular structures, aggregates, and complexes of (bio)organic molecules.
    Grimme S; Antony J; Schwabe T; Mück-Lichtenfeld C
    Org Biomol Chem; 2007 Mar; 5(5):741-58. PubMed ID: 17315059
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effect of dispersion correction on the Au(1 1 1)-H2O interface: a first-principles study.
    Nadler R; Sanz JF
    J Chem Phys; 2012 Sep; 137(11):114709. PubMed ID: 22998283
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.