These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
127 related articles for article (PubMed ID: 24226835)
1. Composition of the saprophytic bacterial communities in freshwater systems contaminated by heavy metals. Houba C; Remacle J Microb Ecol; 1980 Mar; 6(1):55-69. PubMed ID: 24226835 [TBL] [Abstract][Full Text] [Related]
2. Effects of heavy metals on ultrastructure and HSP70s induction in the aquatic moss Leptodictyum riparium Hedw. Esposito S; Sorbo S; Conte B; Basile A Int J Phytoremediation; 2012 Apr; 14(4):443-55. PubMed ID: 22567723 [TBL] [Abstract][Full Text] [Related]
3. Metal release from contaminated leaf litter and leachate toxicity for the freshwater crustacean Gammarus fossarum. Maunoury-Danger F; Felten V; Bojic C; Fraysse F; Cosin Ponce M; Dedourge-Geffard O; Geffard A; Guérold F; Danger M Environ Sci Pollut Res Int; 2018 Apr; 25(12):11281-11294. PubMed ID: 28624948 [TBL] [Abstract][Full Text] [Related]
4. Diversity and Distribution of Heavy Metal-Resistant Bacteria in Polluted Sediments of the Araça Bay, São Sebastião (SP), and the Relationship Between Heavy Metals and Organic Matter Concentrations. Zampieri Bdel B; Pinto AB; Schultz L; de Oliveira MA; de Oliveira AJ Microb Ecol; 2016 Oct; 72(3):582-94. PubMed ID: 27480227 [TBL] [Abstract][Full Text] [Related]
5. Human health risk assessment: A case study involving heavy metal soil contamination after the flooding of the river Meuse during the winter of 1993-1994. Albering HJ; van Leusen SM; Moonen EJ; Hoogewerff JA; Kleinjans JC Environ Health Perspect; 1999 Jan; 107(1):37-43. PubMed ID: 9872715 [TBL] [Abstract][Full Text] [Related]
6. [Spatiotemporal variation characteristics of heavy metals pollution in the water, soil and sediments environment of the Lean River-Poyang Lake Wetland]. Jian MF; Li LY; Xu PF; Chen PQ; Xiong JQ; Zhou XL Huan Jing Ke Xue; 2014 May; 35(5):1759-65. PubMed ID: 25055663 [TBL] [Abstract][Full Text] [Related]
7. Combined use of native and transplanted moss for post-mining characterization of metal(loid) river contamination. Monaci F; Ancora S; Bianchi N; Bonini I; Paoli L; Loppi S Sci Total Environ; 2021 Jan; 750():141669. PubMed ID: 33182204 [TBL] [Abstract][Full Text] [Related]
8. Exploring the impacts of heavy metals on spatial variations of sediment-associated bacterial communities. Rajeev M; Sushmitha TJ; Aravindraja C; Toleti SR; Pandian SK Ecotoxicol Environ Saf; 2021 Feb; 209():111808. PubMed ID: 33360289 [TBL] [Abstract][Full Text] [Related]
9. Accumulation and risk assessment of heavy metals employing species sensitivity distributions in Linggi River, Negeri Sembilan, Malaysia. Razak MR; Aris AZ; Zakaria NAC; Wee SY; Ismail NAH Ecotoxicol Environ Saf; 2021 Mar; 211():111905. PubMed ID: 33453636 [TBL] [Abstract][Full Text] [Related]
10. Heavy metal profile of water, sediment and freshwater cat fish, Chrysichthys nigrodigitatus (Siluriformes: Bagridae), of Cross River, Nigeria. Ayotunde EO; Offem BO; Ada FB Rev Biol Trop; 2012 Sep; 60(3):1289-301. PubMed ID: 23025098 [TBL] [Abstract][Full Text] [Related]
11. Natural variation of copper, zinc, cadmium and selenium concentrations in Bembicium nanum and their potential use as a biomonitor of trace metals. Gay D; Maher W Water Res; 2003 May; 37(9):2173-85. PubMed ID: 12691903 [TBL] [Abstract][Full Text] [Related]
12. Microbiological, chemical and toxicological characterization of contaminated sites in Czechoslovakia. Ríha V; Nymburská K; Tichy R; Tríska J Sci Total Environ; 1993; Suppl Pt 1():185-93. PubMed ID: 8108703 [TBL] [Abstract][Full Text] [Related]
13. Bioremediation of heavy metal toxicity from factory effluents by transconjugants bacteria. El-Zahrani HA; El-Saied AI J Egypt Soc Parasitol; 2011 Dec; 41(3):641-50. PubMed ID: 22435157 [TBL] [Abstract][Full Text] [Related]
14. Probabilistic ecological risk assessment of heavy metals using the sensitivity of resident organisms in four Korean rivers. Park J; Lee S; Lee E; Noh H; Seo Y; Lim H; Shin H; Lee I; Jung H; Na T; Kim SD Ecotoxicol Environ Saf; 2019 Nov; 183():109483. PubMed ID: 31362159 [TBL] [Abstract][Full Text] [Related]
15. Inherent bacterial community response to multiple heavy metals in sediment from river-lake systems in the Poyang Lake, China. Zhang H; Wan Z; Ding M; Wang P; Xu X; Jiang Y Ecotoxicol Environ Saf; 2018 Dec; 165():314-324. PubMed ID: 30212732 [TBL] [Abstract][Full Text] [Related]
16. The importance of metallothionein for the accumulation of copper, zinc and cadmium in environmentally exposed perch, Perca fluviatilis. Hogstrand C; Lithner G; Haux C Pharmacol Toxicol; 1991 Jun; 68(6):492-501. PubMed ID: 1891445 [TBL] [Abstract][Full Text] [Related]
17. Heavy metal contamination of settling particles in a retention pond along the A-71 motorway in Sologne, France. Lee PK; Touray JC; Baillif P; Ildefonse JP Sci Total Environ; 1997 Aug; 201(1):1-15. PubMed ID: 9232021 [TBL] [Abstract][Full Text] [Related]
18. The effects of point pollutants-originated heavy metals (lead, copper, iron, and cadmium) on fish living in Yeşilırmak River, Turkey. Polat F; Akın Ş; Yıldırım A; Dal T Toxicol Ind Health; 2016 Aug; 32(8):1438-1449. PubMed ID: 25575685 [TBL] [Abstract][Full Text] [Related]
19. Waste water bacterial isolates resistant to heavy metals and antibiotics. Filali BK; Taoufik J; Zeroual Y; Dzairi FZ; Talbi M; Blaghen M Curr Microbiol; 2000 Sep; 41(3):151-6. PubMed ID: 10915198 [TBL] [Abstract][Full Text] [Related]
20. Impact of heavy metals on inhibitory concentration of Escherichia coli-a case study of river Yamuna system, Delhi, India. Bhardwaj R; Gupta A; Garg JK Environ Monit Assess; 2018 Oct; 190(11):674. PubMed ID: 30361786 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]