These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

84 related articles for article (PubMed ID: 2422693)

  • 41. Glial fiber pattern in the developing chicken cerebellum: vimentin and glial fibrillary acidic protein (GFAP) immunostaining.
    Roeling TA; Feirabend HK
    Glia; 1988; 1(6):398-402. PubMed ID: 2976399
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Cerebellar connections with the motor cortex and the arcuate premotor area: an analysis employing retrograde transneuronal transport of WGA-HRP.
    Orioli PJ; Strick PL
    J Comp Neurol; 1989 Oct; 288(4):612-26. PubMed ID: 2478593
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Telencephalic cholinergic system of the New World monkey (Cebus apella): morphological and cytoarchitectonic assessment and analysis of the projection to the amygdala.
    Kordower JH; Bartus RT; Marciano FF; Gash DM
    J Comp Neurol; 1989 Jan; 279(4):528-45. PubMed ID: 2465322
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Spinocerebellar projections from the central cervical nucleus in the cat, as studied by anterograde transport of wheat germ agglutinin-horseradish peroxidase.
    Matsushita M; Tanami T
    J Comp Neurol; 1987 Dec; 266(3):376-97. PubMed ID: 3693617
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Patterns of transmitter labelling and connectivity of the cat's nucleus of Darkschewitsch: a wheat germ agglutinin-horseradish peroxidase and immunocytochemical study at light and electron microscopical levels.
    Onodera S; Hicks TP
    J Comp Neurol; 1995 Oct; 361(4):553-73. PubMed ID: 8576414
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Direct projections from the ventrolateral medulla oblongata to the limbic forebrain: anterograde and retrograde tract-tracing studies in the rat.
    Zagon A; Totterdell S; Jones RS
    J Comp Neurol; 1994 Feb; 340(4):445-68. PubMed ID: 7516349
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Afferent connections of the cerebellum in various types of reptiles.
    Bangma GC; ten Donkelaar H
    J Comp Neurol; 1982 May; 207(3):255-73. PubMed ID: 7107986
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Organization of the colliculo-suprageniculate pathway in the cat: a wheat germ agglutinin-horseradish peroxidase study.
    Katoh YY; Benedek G
    J Comp Neurol; 1995 Feb; 352(3):381-97. PubMed ID: 7535808
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A study on the spinoreticulocerebellar tract in chickens.
    Park IK; Kim MK; Tomoro I; Masato U
    J Vet Sci; 2003 Apr; 4(1):1-8. PubMed ID: 12819350
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Evidence of spinocerebellar mossy fiber segregation in the juvenile staggerer cerebellum.
    Ji Z; Jin Q; Vogel MW
    J Comp Neurol; 1997 Feb; 378(3):354-62. PubMed ID: 9034896
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Neurogenesis of spinothalamic and spinocerebellar tract neurons in the lumbar spinal cord of the rat.
    Beal JA; Bice TN
    Brain Res Dev Brain Res; 1994 Mar; 78(1):49-56. PubMed ID: 8004773
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The origin of spinocerebellar pathways. II. The nucleus centrobasalis of the cervical enlargement and the nucleus dorsalis of the thoracolumbar spinal cord.
    Petras JM; Cummings JF
    J Comp Neurol; 1977 Jun; 173(4):693-716. PubMed ID: 266509
    [No Abstract]   [Full Text] [Related]  

  • 53. Development of the blood-brain barrier to horseradish peroxidase in the chick embryo.
    Wakai S; Hirokawa N
    Cell Tissue Res; 1978 Dec; 195(2):195-203. PubMed ID: 737715
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Lectin-binding patterns in the development of the cerebellum.
    Viejo Tirado F; Peña Melián A; Puerta Fonollá J
    Anat Embryol (Berl); 1994 Feb; 189(2):169-79. PubMed ID: 8010415
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Mechanisms of neural patterning and specification in the developing cerebellum.
    Hatten ME; Heintz N
    Annu Rev Neurosci; 1995; 18():385-408. PubMed ID: 7605067
    [No Abstract]   [Full Text] [Related]  

  • 56. Spinocerebellar mossy fiber terminal topography in the NR2C/PKC gamma double mutant cerebellum.
    Ji Z; Ebralidze A; Tonegawa S; Vogel MW
    Brain Res Dev Brain Res; 1996 Nov; 97(1):138-42. PubMed ID: 8946062
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Fluorescence mapping of afferent topography in three dimensions.
    Reeber SL; Gebre SA; Sillitoe RV
    Brain Struct Funct; 2011 Sep; 216(3):159-69. PubMed ID: 21387082
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Tracing neuroepithelial cells of the mesencephalic and metencephalic alar plates during cerebellar ontogeny in quail-chick chimaeras.
    Hallonet ME; Le Douarin NM
    Eur J Neurosci; 1993 Sep; 5(9):1145-55. PubMed ID: 8281319
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The development of brain stem projections to the spinal cord in the chicken embryo.
    Glover JC
    Brain Res Bull; 1993; 30(3-4):265-71. PubMed ID: 8457875
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Revealing neural circuit topography in multi-color.
    Reeber SL; Gebre SA; Filatova N; Sillitoe RV
    J Vis Exp; 2011 Nov; (57):. PubMed ID: 22105327
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.